...
首页> 外文期刊>Journal of Applied Physics >The effects of crystal proximity and crystal-binder adhesion on the thermal responses of ultrasonically-excited composite energetic materials
【24h】

The effects of crystal proximity and crystal-binder adhesion on the thermal responses of ultrasonically-excited composite energetic materials

机译:晶体接近度和粘合剂结合对超声激发复合高能材料热响应的影响

获取原文
获取原文并翻译 | 示例

摘要

Composite energetic materials have been shown to generate heat under certain ultrasonic excitations, enough to drive rapid reactions in some cases. In an attempt to isolate the proposed heat generation mechanisms of frictional and viscoelastic heating at crystal-crystal and crystal-binder interfaces, a systematic study was conducted with cyclotetramethylene-tetranitramine crystals arranged as discrete inclusions within Sylgard 184 binder. Groups of three embedded crystals, or "triads," were arranged in two geometries with the crystals either in contact or slightly separated. Additionally, samples with good crystal-binder adhesion as well as ones mechanically debonded using compression were considered. The samples were excited ultrasonically with a contact piezoelectric transducer, and the top surface of each sample was monitored via infrared thermography. The contacting triads showed evidence of an intense localized heat source conducting to the polymer surface above the crystal locations in contrast to the separated triads. The debonded samples of both types reached higher maximum surface temperatures, on average. The results of both two-way and nested analysis of variance indicate a statistically significant difference for both adhesion and separation distance on temperature rise. We conclude that friction between crystal contact points and a debonded, moving binder at the crystal interface (also a mode of friction) play a significant role in localized heat generation, while viscoelastic/viscoplastic heating appears comparatively minor for these specific excitation conditions. The significance of frictional heat generation over viscoelastic heating in these systems may influence future design considerations related to the selection of binder materials for composite energetic materials.
机译:已显示复合高能材料在某些超声激发下会产生热量,在某些情况下足以驱动快速反应。为了隔离提出的在晶体-晶体和晶体-粘合剂界面处的摩擦和粘弹性加热的热量生成机理,对环四亚甲基-四硝胺晶体在Sylgard 184粘合剂中以离散夹杂物的形式进行了系统的研究。将三个嵌入式晶体或“三合一”的组排列成两个几何形状,使晶体处于接触状态或稍微分开。此外,还考虑了具有良好的晶体粘合剂粘合性的样品以及通过压缩机械脱粘的样品。用接触压电换能器超声激发样品,并通过红外热成像法监测每个样品的上表面。接触的三单元组显示出与分离的三单元组相反,强烈的局部热源传导至晶体位置上方的聚合物表面的证据。平均而言,两种类型的脱粘样品均达到较高的最大表面温度。双向方差分析和嵌套方差分析的结果均表明,随着温度的升高,粘附力和分离距离均具有统计学上的显着差异。我们得出的结论是,晶体接触点与在晶体界面处的脱粘的,移动的粘结剂之间的摩擦(也是一种摩擦方式)在局部热量产生中起着重要作用,而对于这些特定的激发条件,粘弹/粘塑性加热显得相对较小。在这些系统中,摩擦生热相对于粘弹性加热的重要性可能会影响与设计复合含能材料粘合剂材料有关的未来设计考虑。

著录项

  • 来源
    《Journal of Applied Physics 》 |2017年第24期| 244901.1-244901.7| 共7页
  • 作者单位

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA,Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, Indiana 47907, USA,Ray W. Herrick Laboratories, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA,Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA,Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA,Ray W. Herrick Laboratories, Purdue University, West Lafayette, Indiana 47907, USA,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA;

    School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA,Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, Indiana 47907, USA,School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号