首页> 外文会议> >Strain and Damage Sensing at the Mesoscale in Energetic Materials in Response to Localized Thermal Loads
【24h】

Strain and Damage Sensing at the Mesoscale in Energetic Materials in Response to Localized Thermal Loads

机译:响应局部热负荷,含能材料中尺度的应变和损伤传感

获取原文
获取原文并翻译 | 示例

摘要

Plastic bonded explosives (PBXs), consisting of high energy density energetic crystals in a polymer binder, area class of energetic materials which have been widely studied in regards to their shock and ignition response. Ofincreasing interest is the response of such energetic materials to non-shock mechanical insults, e.g. accidentaldrop and dynamic/vibration loads in transport, which have been observed to produce localized damage andthermal loading due to the formation of hot spots. In some cases, the formation of these hot spots can leadto sufficient levels of localized heating capable of sustaining chemical reactions and transitioning to detonation.While there are several proposed mechanisms which could drive the formation of hot spots, the primary driver(s)for sustaining the chemical reaction and triggering detonation are not well understood. This is in part due tothe diu000eculty in experimentally characterizing the distribution and interaction of hot spots at the mesoscale,given the small length and time scales over which they exist. Recently, Seidel and co-workers have explored theapplication of the distribution of carbon nanotubes within the binder phase of energetic materials as a means ofintroducing a signicant piezoresistive response within the energetic material. Doing this can provide a means forstrain and damage sensing at the mesoscale. While initial fabrication and testing of ammonium perchlorate andsugar-mock PDMS- and epoxy-binder energetic materials have provided initial proof-of-concept demonstrationsof strain and damage sensing, successful application towards locating and characterizing damage and hot spotsrequires greater understanding of the piezoresistive network at the mesoscale, and how it responds to localizedheating. In this work, a mesoscale model corresponding to a representative volume element of an energeticmaterial having a piezoresistive carbon nanotube nanocomposite binder is developed and subjected to localizedheating. An electro-thermo-mechanical peridynamics formulation is developed which includes the generation ofheat energy due to fracture and friction, and is applied to assess the diu000berences between strain and damagesensing. Eu000borts are also made to assess the response of the mesoscale sensing network to localized heating anddamage due to the presence of and interactions between increasing amounts of prescribed hot spots. Initialmodeling results from these simulations reveal that the distribution of localized heating (leading to interactionsbetween heat sources) and heating rate are strong indicators of whether or not such thermally induced damagewill propagate beyond its local origin.
机译:由聚合物粘合剂中的高能量密度高能晶体组成的塑料粘结炸药(PBX)是一类高能材料,已对其冲击和点火响应进行了广泛研究。人们越来越感兴趣的是这种高能材料对非冲击性机械损伤的反应,例如对人体的伤害。运输过程中意外的\ r \ n \掉落和动态/振动载荷已被观察到,由于热点的形成,它们会产生局部损坏和\\\ n热载荷。在某些情况下,这些热点的形成可以导致足够水平的局部加热,从而能够维持化学反应并过渡到爆轰。\ r \ n尽管有几种提出的机制可以推动热点的形成,但是维持化学反应和触发爆轰的主要驱动力还不为人所理解。这部分是由于研究人员在实验上表征了中尺度上热点的分布和相互作用,因为它们存在着很小的长度和时间尺度。最近,Seidel和他的同事们探索了在高能材料的粘结相中碳纳米管分布的应用,作为在高能材料中引入重要压阻响应的一种手段。这样做可以为中尺度的应变和损伤感测提供一种方法。虽然高氯酸铵和\ n \ sugar-mock PDMS-和环氧粘合剂高能材料的初步制造和测试已提供了概念验证的初步证明\ r \ n应变和损伤感应,但已成功应用于定位和表征损伤和热点\ r \ n需要对中尺度的压阻网络及其对局部加热的响应有更多的了解。在这项工作中,中尺度模型与具有压阻碳纳米管纳米复合粘合剂的高能材料的代表性体积元素相对应,并进行了局部加热。开发了一种电热机械的围力学公式,该公式包括由于断裂和摩擦而产生的热能,并被用于评估应变与损伤之间的差异。还进行了电子评估以评估中尺度传感网络对局部加热和损坏的反应,这是由于指定热点数量的增加和相互作用所致。这些模拟的初步建模结果表明,局部加热的分布(导致热源之间的相互作用\ r \ n)和加热速率是此类热诱发损伤是否会传播超过其本地起源的有力指标。 。

著录项

  • 来源
    《》|2019年|1096807.1-1096807.8|共8页
  • 会议地点 0277-786X;1996-756X
  • 作者单位

    Dept. of Aerospace and Ocean Engineering, Blacksburg, VA 24061, USA.;

    Dept. of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.;

    T-3, Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, NM87544, USA;

    Dept. of Aerospace and Ocean Engineering, Blacksburg, VA 24061, USA gary.seidel@vt.edu, Telephone: +1 (540) 231-9897;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-26 14:32:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号