...
首页> 外文期刊>Journal of Applied Physics >Tunable electronic and optical properties of gas molecules adsorbed monolayer graphitic ZnO: Implications for gas sensor and environment monitoring
【24h】

Tunable electronic and optical properties of gas molecules adsorbed monolayer graphitic ZnO: Implications for gas sensor and environment monitoring

机译:气体分子吸附单层石墨ZnO的可调电子和光学性质:对气体传感器和环境监测的意义

获取原文
获取原文并翻译 | 示例

摘要

Due to the large surface area and the peculiar electronic characters, great attention has been paid to 2D materials for the gas sensing applications. Here, using the hybrid density functional calculations, we systematically study the adsorptions of gas molecules on the monolayer graphitic ZnO (g-ZnO), including CO, H_2, H_2O, H_2S, NH_3, NO, NO_2, O_2, and SO_2. For most of the molecules, g-ZnO shows superior sensing performance to the well-known MoS_2, black phosphorus, blue phosphorus, antimo-nene, and germanene. H_2S, NO, NO_2, and SO_2 act as charge acceptors, and CO, H_2, H_2O, and NH_3 serve as charge donors. These molecules also induce distinct modifications to the electronic structures, work functions, and optical adsorptions. NO, NO_2, and O_2 form flat bands in the bandgaps of the spin-up or spin-down states, whereas other molecules mainly tune the bandgaps and the orbital couplings. In particular, g-ZnO is most likely to adsorb the atmospheric pollutant SO_2, which has the strongest interaction through hybridizing its widely broadened 2p orbitals with the 3d orbitals of g-ZnO. Moreover, the improved visible light absorption is demonstrated in the NO_2 adsorbed g-ZnO. Our results not only confirm that the electronic and optical properties of g-ZnO can be effectively tuned by the selective adsorption of gas molecules but also provide insightful guidance for the potential application of g-ZnO in the field of gas sensors.
机译:由于较大的表面积和独特的电子字符,已将大量注意力用于气体传感应用的2D材料。在这里,使用混合密度泛函计算,我们系统地研究了气体分子在单层石墨ZnO(g-ZnO)上的吸附,包括CO,H_2,H_2O,H_2S,NH_3,NO,NO_2,O_2和SO_2。对于大多数分子,g-ZnO的传感性能优于众所周知的MoS_2,黑磷,蓝磷,抗mo烯和锗烯。 H_2S,NO,NO_2和SO_2充当电荷受体,而CO,H_2,H_2O和NH_3充当电荷供体。这些分子还引起电子结构,功函数和光学吸附的明显改变。 NO,NO_2和O_2在自旋向上或向下旋转状态的带隙中形成平坦的带,而其他分子主要调节带隙和轨道耦合。尤其是,g-ZnO最有可能吸附大气污染物SO_2,该污染物通过将其广泛扩展的2p轨道与g-ZnO的3d轨道混合而具有最强的相互作用。此外,在NO 2吸附的g-ZnO中显示出改善的可见光吸收。我们的结果不仅证实了g-ZnO的电子和光学性质可以通过选择性吸附气体分子而得到有效调节,而且还为g-ZnO在气体传感器领域的潜在应用提供了有见地的指导。

著录项

  • 来源
    《Journal of Applied Physics 》 |2017年第24期| 244304.1-244304.6| 共6页
  • 作者

    Wei Zhang; Qikui Du; Lifa Zhang;

  • 作者单位

    Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Department of Physics, Nanjing Normal University, Nanjing 210023, China,National Judicial Authentication Center of State Forestry Public Security Bureau, Physicochemical Group of College of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023, China;

    Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Department of Physics, Nanjing Normal University, Nanjing 210023, China;

    Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Department of Physics, Nanjing Normal University, Nanjing 210023, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号