首页> 外文期刊>Journal of Applied Physics >Coincidence timing of femtosecond optical pulses in an X-ray free electron laser
【24h】

Coincidence timing of femtosecond optical pulses in an X-ray free electron laser

机译:X射线自由电子激光器中飞秒光脉冲的重合时序

获取原文
获取原文并翻译 | 示例
           

摘要

Femtosecond resolution pump-probe experiments are now routinely carried out at X-ray Free Electron Lasers, enabled by the development of cross-correlation "time-tools" which correct the picosecond-level jitter between the optical and X-ray pulses. These tools provide very accurate, <10 fs, measurement of the relative arrival time, but do not provide a measure of the absolute coincidence time in the interaction. Cross-correlation experiments using transient reflectivity in a crystal are commonly used for this purpose, and to date no quantitative analysis of the accuracy or stability of absolute coincidence time determination has been performed. We have performed a quantitative analysis of coincidence timing at the SACLA facility through a cross-correlation of 100 ± 10 fs, 400 nm optical pulses with 7 fs, 10.5 keV X-ray pulses via transient reflectivity in a cerium-doped yttrium aluminum garnet crystal. We have modelled and fit the transient reflectivity, which required a convolution with a 226 ± 12 fs uncertainty that was believed to be dominated by X-ray and laser intensity fluctuations, or assuming an extinction depth of 13.3 μm greater than the literature value of 66.7 μm. Despite this, we are able to determine the absolute coincidence time to an accuracy of 30 fs. We discuss the physical contributions to the uncertainty of coincidence time determination, which may include an uncharacterised offset delay in the development of transient reflectivity, including cascading Auger decays, secondary ionisation and cooling processes. Additionally, we present measurements of the intrinsic short-term and long-term drifts between the X-rays and the optical laser timing from time-tool analysis, which is dominated by a thermal expansion of the 25 m optical path between tool and the interaction region, seen to be ∼60 fs over a period of 5 h.
机译:飞秒分辨率泵浦探针实验现在通常在X射线自由电子激光器上进行,这是通过开发互相关的“时间工具”来实现的,该工具可以校正光脉冲和X射线脉冲之间的皮秒级抖动。这些工具提供了相对准确的相对到达时间的精确测量,<10 fs,但是没有提供交互中绝对重合时间的测量。为此目的,通常使用在晶体中使用瞬态反射率的互相关实验,迄今为止,尚未对绝对符合时间确定的准确性或稳定性进行定量分析。我们通过掺杂铈的钇铝石榴石晶体中的瞬态反射率,通过100±10 fs,400 nm光脉冲与7 fs,10.5 keV X射线脉冲的互相关,对SACLA设施的重合时间进行了定量分析。 。我们已经建模并拟合了瞬态反射率,该瞬变率要求卷积具有226±12 fs的不确定度,这被认为是X射线和激光强度波动所决定的,或者假设消光深度比文献值66.7大13.3μm。微米尽管如此,我们仍能够确定绝对重合时间,精度为30 fs。我们讨论了物理因素对重合时间确定的不确定性的影响,这可能包括瞬态反射率发展中未表征的偏移延迟,包括级联俄歇衰变,二次电离和冷却过程。此外,我们介绍了时间工具分析对X射线与光学激光定时之间固有的短期和长期漂移的测量结果,其中主要是工具与相互作用之间25 m光路的热膨胀该区域在5小时内约为60 fs。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第20期|203105.1-203105.11|共11页
  • 作者单位

    Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London, United Kingdom;

    Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London, United Kingdom;

    Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxon, United Kingdom;

    Molecular Biophysics, Imperial College London, South Kensington Campus, London, United Kingdom;

    Molecular Biophysics, Imperial College London, South Kensington Campus, London, United Kingdom;

    Molecular Biophysics, Imperial College London, South Kensington Campus, London, United Kingdom;

    Molecular Biophysics, Imperial College London, South Kensington Campus, London, United Kingdom;

    Molecular Biophysics, Imperial College London, South Kensington Campus, London, United Kingdom;

    Protein Crystallography Facility, Centre for Structural Biology, Department of Life Sciences, Imperial College London, Flowers Building, London, United Kingdom;

    Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London, United Kingdom;

    RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo, Japan;

    Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan;

    RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo, Japan;

    RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo, Japan,Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo, Japan;

    RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo, Japan,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan;

    Molecular Biophysics, Imperial College London, South Kensington Campus, London, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号