...
首页> 外文期刊>Journal of Applied Physics >Multi-physics simulation of metal printing at microanoscale using meniscus-confined electrodeposition: Effect of nozzle speed and diameter
【24h】

Multi-physics simulation of metal printing at microanoscale using meniscus-confined electrodeposition: Effect of nozzle speed and diameter

机译:使用弯月限制电沉积的微米/纳米级金属印刷的多物理场模拟:喷嘴速度和直径的影响

获取原文
获取原文并翻译 | 示例

摘要

Meniscus-confined electrodeposition (MCED) is a solution-based, room temperature process for 3D printing of metals at microanoscale. In this process, a meniscus (liquid bridge or capillary) between a nozzle and a substrate governs the localized electrodeposition process, which involves multiple physics of electrodeposition, fluid dynamics, mass, and heat transfer. We have developed a multiphysics finite element (FE) model to investigate the effects of nozzle speed (v_N) and nozzle diameter (D_0) in the MCED process. The simulation results are validated with experimental data. Based on theoretical approach and experimental observation, the diameter of the deposited wire is in the range of 0.5-0.9 times of the nozzle diameter. The applicable range for v_N for various nozzle diameters is computed. The results showed that the contribution of migration flux to total flux remains nearly constant (~50%) for all values of pipette diameter in the range examined (100nm-5 μm), whereas the contribution of diffusion and evaporation fluxes to total flux increase and decrease with the increasing pipette diameter, respectively. Results of this multiphysics study can be used to guide the experiment for optimal process conditions.
机译:弯液面电沉积(MCED)是一种基于溶液的室温工艺,用于以微米/纳米尺度对金属进行3D打印。在此过程中,喷嘴和基材之间的弯液面(液桥或毛细管)控制着局部电沉积过程,该过程涉及电沉积,流体动力学,质量和热传递的多种物理过程。我们已经开发了一个多物理场有限元(FE)模型,以研究MCED过程中喷嘴速度(v_N)和喷嘴直径(D_0)的影响。仿真结果已通过实验数据验证。基于理论方法和实验观察,沉积丝的直径在喷嘴直径的0.5-0.9倍的范围内。计算了各种喷嘴直径的v_N的适用范围。结果表明,在所研究的移液管直径的所有值(100nm-5μm)中,迁移通量对总通量的贡献几乎保持恒定(〜50%),而扩散和蒸发通量对总通量的贡献增加并且分别随着移液管直径的增加而减小。这项多物理场研究的结果可用于指导最佳工艺条件的实验。

著录项

  • 来源
    《Journal of Applied Physics 》 |2017年第21期| 214305.1-214305.10| 共10页
  • 作者单位

    Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, USA;

    Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, USA;

    Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, USA;

    Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, USA;

    Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, USA;

    Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, USA;

    Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, USA;

    Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, USA,Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, Texas 75080, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号