...
首页> 外文期刊>Journal of Applied Physics >Creep, Recovery, and Permanent Set for GR‐S and Hevea
【24h】

Creep, Recovery, and Permanent Set for GR‐S and Hevea

机译:GR‐S和Hevea的蠕变,恢复和永久变形

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A study was made of creep, recovery, and permanent set for Hevea and GR‐S over a 1000‐hr. period and a range of elongations at 35°C. Creep for GR‐S is greater than for Hevea. The stress for GR‐S is considered to be supported to a greater extent by a relatively unstable secondary bond structure. This is consistent with the large creep values for GR‐S at low elongations and the large ratio of primary or recoverable creep to permanent set. Hevea, in contrast, shows low creep at both high and low elongations and maximum creep at intermediate elongations for which the structure is heterogeneous, consisting of amorphous and crystalline phases. A procedure was worked out for determining the contribution of permanent set to the observed creep. The creep curves were concave to the strain axis when plotted against logarithmic time. After correction was made for permanent set, they were found to be approximately linear, thus extending the range of application of the Tobolsky‐Eyring theory of creep. At the start of the creep test the flow appears to be due largely to the reversible yielding of relatively weak bonds which can reform under the action of the elastic network when the stress is removed. For longer periods of time, or for higher elongations, the flow involves more deep seated changes in structure. Larger units of structure are displaced or stronger bonds broken with resultant permanent molecular displacements upon removal of the stress. For Hevea at high elongations all of the flow was accounted for by permanent set.
机译:对Hevea和GR‐S在1000小时内的蠕变,恢复和永久变形进行了研究。周期和35°C的延伸范围。 GR‐S的蠕变大于Hevea的蠕变。认为GR‐S的应力在较大程度上受到相对不稳定的次级键结构的支持。这与低伸长率下GR‐S的大蠕变值以及主要或可恢复的蠕变与永久变形的较大比率相一致。相比之下,橡胶橡胶在高伸长率和低伸长率下均显示出低蠕变,而在中间伸长率下则显示出最大蠕变,其结构是不均匀的,由非晶相和结晶相组成。制定了确定永久变形对观测蠕变的贡献的程序。当对数时间作图时,蠕变曲线对应变轴凹入。对永久变形进行校正后,发现它们近似线性,从而扩展了Tobolsky-Eyring蠕变理论的应用范围。在蠕变测试开始时,流动似乎主要归因于相对弱的键的可逆屈服,当应力消除后,该键可在弹性网络的作用下重新形成。对于较长的时间段或较高的伸长率,流动涉及结构中更深的位置变化。消除应力后,较大的结构单元被置换或更牢固的键断裂,最终分子发生永久位移。对于高伸长率的橡胶橡胶,所有流动均由永久变形来解释。

著录项

  • 来源
    《Journal of Applied Physics》 |1948年第5期|共8页
  • 作者

    Gehman S. D.;

  • 作者单位

    Research Laboratories, The Goodyear Tire and Rubber Company, Akron, Ohio;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号