首页> 外文期刊>Journal of the American statistical association >Large-Sample Joint Posterior Approximations When Full Conditionals Are Approximately Normal: Application to Generalized Linear Mixed Models
【24h】

Large-Sample Joint Posterior Approximations When Full Conditionals Are Approximately Normal: Application to Generalized Linear Mixed Models

机译:当全条件近似正常时的大样本联合后验近似:在广义线性混合模型上的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Modern Bayesian statistical methods, such as Gibbs and Metropolis-Hastings sampling, were developed to liberate statisticians from the necessity of making large-sample assumptions and to facilitate the numerical approximation of problems that had previously been analytically intractable. Counter to this trend, we develop a method for constructing asymptotic joint posterior approximations based on models with k blocks of parameters and where the corresponding properly normalized full conditionals are themselves asymptotically normal. We illustrate these techniques by applying them to particular linear and generalized linear mixed models (GLMMs). We also consider the relevance of different parameterizations with regard to our asymptotics. Recent work has indicated that Gibbs samplers based on so-called "centering parameterizations" result in better convergence properties for the resulting Markov chains. Our results for the one-way random-effects model shed some light on this issue. For this example, we also consider the distinction between letting the within-group sample size, n, tend to infinity versus letting the number of groups K (as defined by the random-effects part of the model) tend to infinity. Letting n grow results in a proper limiting normal distribution only when the weight on the prior for the variance component grows at a rate comparable to n. With large K, on the other hand, proper limits are obtained without this assumption, and thus it is seen that the information in the data will ultimately swamp standard prior information. We compare results based on simulated data when n and K are large. A dataset involving the effect of smoking on hormone function is analyzed using our asymptotics and compared with results based on Gibbs sampling.
机译:开发了现代贝叶斯统计方法,例如Gibbs和Metropolis-Hastings抽样,以使统计学家从进行大样本假设的必要中解放出来,并促进对以前难以分析的问题进行数值近似。与此趋势相反,我们开发了一种基于具有k个参数块的模型来构造渐近关节后验逼近的方法,其中相应的适当归一化的完全条件本身就是渐近正态的。我们通过将它们应用于特定的线性和广义线性混合模型(GLMM)来说明这些技术。我们还考虑了关于渐近性的不同参数化的相关性。最近的工作表明,基于所谓的“居中参数化”的吉布斯采样器为所得的马尔可夫链带来了更好的收敛性。我们的单向随机效应模型的结果为这个问题提供了一些启示。对于此示例,我们还考虑了让组内样本大小n趋于无穷与让组K的数量(由模型的随机效应部分定义)趋于无穷之间的区别。仅当方差分量的先验权重以与n相当的速率增长时,让n增长才导致适当的正态极限分布。另一方面,对于大的K,无需此假设即可获得适当的限制,因此可以看出,数据中的信息最终将淹没标准先验信息。当n和K大时,我们根据模拟数据比较结果。我们使用渐近分析法分析了涉及吸烟对激素功能影响的数据集,并与基于吉布斯抽样的结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号