首页> 外文期刊>Journal of the American Chemical Society >Peroxo−Iron Mediated Deformylation in Sterol 14α-Demethylase Catalysis
【24h】

Peroxo−Iron Mediated Deformylation in Sterol 14α-Demethylase Catalysis

机译:过氧铁介导的甾醇14α-脱甲基酶催化的甲酰化反应

获取原文
获取原文并翻译 | 示例
       

摘要

The mechanisms of cytochrome P450 (CYP) catalyzed C−C bond cleavage have been strongly debated and difficult to unravel. Herein, deformylation mechanisms of the sterol 14α-demethylase (CYP51) from Mycobacterium tuberculosis are elucidated using molecular dynamics simulation, density functional theory, and hybrid quantum mechanics/molecular mechanics methods. These results provide strong theoretical support for the operation of the peroxo intermediate in CYP-catalyzed deformylation. Molecular dynamics simulations support the lanosterol carboxaldehyde intermediate diverts the hydrogen-bonded network of water putatively involved in proton delivery to peroxo and compound 0 (Cmpd 0) away from the O2 ligand. In the presence of the aldehyde substrate, the peroxo intermediate is trapped as the peroxohemiacetal without an apparent barrier, which may then be protonated in the active site. The unprotonated peroxohemiacetal provides a branch point for a concerted deformylation mechanism; however, a stepwise mechanism initiated by cleavage of the C−C bond was found to be more energetically feasible. Population analyses of the peroxoformate/deformylated substrate complex indicate that heterolytic cleavage of the C−C bond in the enzyme environment generates a carbanion at C14. Conversely, in the absence of the protein electrostatic background, the C−C cleavage reaction proceeds homolytically, indicating that the active site environment exerts a strong modulatory effect on the electronic structure of this intermediate. If the peroxohemiacetal is protonated, this species preferentially expels formic acid through an O−O cleavage transition state. After expulsion of the formyl unit, both proton-independent and -dependent pathways converge to a complex containing compound II, which readily abstracts the 15α-hydrogen, thereby inserting the 14,15 double bond into the steroid skeleton. Parallel studies considering nucleophilic addition of Cmpd 0 to the aldehyde intermediate indicated that this reaction proceeds with high energetic barriers. Finally, the hydrogen atom abstraction and proton coupled electron transfer mechanism ( J. Am. Chem. Soc. 2005, 127, 5224−5237) for compound I (Cmpd I) mediated deformylation of the geminal diol was considered in the context of the protein environment. In contrast to gas phase calculations, triradicaloid and pentaradicaloid Cmpd I states failed to initiate a concerted deformylation of the geminal diol. This study provides a unified mechanistic view consistent with decades of experiments aimed at understanding the deformylation reaction. Additionally, these results provide general mechanistic insight into the catalytic mechanisms of several biosynthetic and xenobiotic-oxidizing CYP enzymes of biomedical importance.
机译:细胞色素P450(CYP)催化CC键断裂的机理已被激烈争论,并且难以阐明。本文中,使用分子动力学模拟,密度泛函理论和混合量子力学/分子力学方法阐明了结核分枝杆菌固醇14α-脱甲基酶(CYP51)的去甲酰基化机理。这些结果为过氧中间体在CYP催化的甲酰基化中的操作提供了有力的理论支持。分子动力学模拟支持羊毛甾醇甲醛中间体将氢参与的质子传递氢键网络从O 2 配体转移到过氧化合物和化合物0(Cmpd 0)。在存在醛底物的情况下,过氧中间体以过氧半缩醛的形式被捕获而没有明显的屏障,然后可以在活性位点将其质子化。未质子化的过氧半缩醛为协同的甲酰基化机理提供了一个分支点。然而,发现由CC键断裂引发的逐步机理在能量上更可行。过氧甲酸酯/去甲酰化底物复合物的种群分析表明,酶环境中CC键的杂合裂解在C14处产生碳负离子。相反,在没有蛋白质静电本底的情况下,CC裂解反应会同质进行,这表明活性位点环境对该中间体的电子结构具有很强的调节作用。如果过氧半缩醛被质子化,则该物种优先通过O-O裂解过渡态排出甲酸。驱除甲酰基单元后,质子独立和依赖路径均会汇聚到含有化合物II的复合物中,后者很容易提取15α-氢,从而在类固醇骨架中插入14,15双键。考虑到Cmpd 0亲核加成到醛中间体的平行研究表明,该反应在高能垒下进行。最后,在蛋白质的背景下,考虑了化合物I(Cmpd I)介导的双子二醇的甲酰基化的氢原子提取和质子偶联电子转移机理(J. Am。Chem。Soc。2005,127,5224-5237)环境。与气相计算相反,三基和五基Cmpd I状态未能引发双子甘醇的协同去甲酰基化。这项研究提供了统一的力学观点,与数十年来旨在了解甲酰化反应的实验相一致。此外,这些结果提供了对具有生物医学重要性的几种生物合成和异种生物氧化性CYP酶催化机理的一般机理认识。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第30期|p.10293-10305|共13页
  • 作者单位

    Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, 800 East Leigh Street, Richmond, Virginia 23219;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:50:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号