首页> 外文期刊>Journal of the American Chemical Society >Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment
【24h】

Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment

机译:聚电解质层层组装成离子电流整流固态纳米孔:理论和实验的见解。

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract: Molecular design of ionic current rectifiers created on the basis of single conical nanopores isnreceiving increasing attention by the scientific community. Part of the appeal of this topic relies on theninterest in sensors and fluidic nanoactuators based on the transport of ions and molecules through nanoporenarchitectures that can readily be integrated into functional systems. The chemical modification of the porenwalls controls not only the diameter of these nanoarchitectures but also their selectivity and transportnproperties. In order to confer selectivity to solid-state nanopores, it is necessary to develop and explorennew methods for functionalizing the pore walls. Hence, the creation of functional nanopores capable ofnacting as selective ion channels or smart nanofluidic sensors depends critically on our ability to assemblenand build up molecular architectures in a predictable manner within confined geometries with dimensionsncomparable to the size of the building blocks themselves. In this context, layer-by-layer deposition ofnpolyelectrolytes offers a straightforward process for creating nanoscopic supramolecular assembliesndisplaying a wide variety of functional features. In this work, we describe for the first time the integrationnof layer-by-layer polyelectrolyte assemblies into single conical nanopores in order to study and explore thenfunctional features arising from the creation of charged supramolecular assemblies within the constrainedngeometry of the nanofluidic device. To address this challenging topic, we used a combined experimentalnand theoretical approach to elucidate and quantify the electrostatic changes taking place inside the nanoporenduring the supramolecular assembly process. The multilayered films were built up through consecutivenlayer-by-layer adsorption of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate) (PSS) on thenpore surface. Our results show that the charge transport properties of single conical nanopores functionalizednwith PAH/PSS assemblies are highly dependent on the number of layers assembled on the pore wall. Inncontrast to what happens with PAH/PSS films deposited on planar surfaces (quantitative charge reversal),nthe surface charge of the pore walls decreases dramatically with the number of PAH/PSS layers assembledninto the nanopore. This behavior was attributed to the nanoconfinement-induced structural reorganizationnof the polyelectrolyte layers, leading to the efficient formation of ion pairs and promoting a marked decreasenin the net fixed charges on the nanopore walls. We consider that these results are of paramount relevancenfor the modification of nanopores, nanopipets, and nanoelectrodes using charged supramolecularnassemblies, as well as of importance in “soft nanotechnology” provided that structural complexity, inducednby nanoconfinement, can define the functional properties of self-assembled polymeric nanostructures.
机译:摘要:在单个圆锥形纳米孔的基础上创建的离子电流整流器的分子设计正受到越来越多的科学界的关注。该主题的部分吸引力在于对传感器和流体纳米驱动器的兴趣,该传感器基于离子和分子通过可以轻松集成到功能系统中的纳米孔结构的传输。孔壁的化学修饰不仅控制这些纳米结构的直径,而且还控制其选择性和传输性质。为了赋予对固态纳米孔的选择性,有必要开发和探索使孔壁功能化的新方法。因此,能否充当选择性离子通道或智能纳米流体传感器的功能性纳米孔的产生,关键取决于我们以可预测的方式在有限的几何结构内以与构造块本身尺寸可比的方式组装和构建分子结构的能力。在这种情况下,聚电解质的逐层沉积提供了一种直接的过程,用于创建具有多种功能特征的纳米级超分子组装体。在这项工作中,我们首次描述了将逐层聚电解质组件集成到单个圆锥形纳米孔中的目的,以便研究和探索由于在纳米流体装置的受限制几何形状内产生带电超分子组件而产生的功能特征。为了解决这个具有挑战性的主题,我们使用了一种结合实验和理论的方法来阐明和量化超分子组装过程中纳米孔内部发生的静电变化。多层膜是通过在孔表面连续地逐层吸附聚烯丙胺盐酸盐(PAH)和聚苯乙烯磺酸盐(PSS)来构建的。我们的结果表明,用PAH / PSS组件功能化的单个圆锥形纳米孔的电荷传输特性高度依赖于孔壁上组装的层数。与沉积在平面表面上的PAH / PSS薄膜发生的情况相反(定量电荷逆转),孔壁的表面电荷随组装到纳米孔中的PAH / PSS层的数量而急剧减少。这种行为归因于纳米溶液诱导的聚电解质层的结构重组,从而导致离子对的有效形成,并促进了纳米孔壁上净固定电荷的显着减少。我们认为这些结果与使用带电超分子组装体修饰纳米孔,纳米吸管和纳米电极至关重要,并且在“软纳米技术”中具有重要意义,前提是由纳米连接引发的结构复杂性可以定义自组装聚合物的功能特性纳米结构。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第24期|p.8338-8348|共11页
  • 作者单位

    Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Technische Uni ersita ¨tDarmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, Max-Planck-Institut fu ¨rPolymerforschung, Ackermannweg 10, 55128 Mainz, Germany, Departament de Fı ´sica de la Terra iTermodina ´mica, Uni ersitat de Vale ´ncia, E-46100 Burjassot, Spain, Departament de Fı ´sica Aplicada,Uni ersidad Polite ´cnica de Valencia, E-46022 Valencia, Spain, GSI Helmholtzzentrum fu ¨rSchwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany, Austrian Institute ofTechnology, Donau-City-Strasse 1, 1220 Vienna, Austria, and Instituto de In estigacionesFisicoquı ´micas Teo ´ricas y Aplicadas (INIFTA), Depto. de Quı ´mica, Fac. de Ciencias Exactas,Uni ersidad Nacional de La Plata, CONICET, CC 16 Suc.4 (1900) La Plata, ArgentinaReceived February 4, 2010, E-mail: azzaroni@inifta.unlp.edu.ar,;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:50:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号