...
首页> 外文期刊>Journal of Aircraft >Development of a Micro Twin-Rotor Cyclocopter Capable of Autonomous Hover
【24h】

Development of a Micro Twin-Rotor Cyclocopter Capable of Autonomous Hover

机译:具有自主悬停功能的微型双旋翼旋翼机的研制

获取原文
获取原文并翻译 | 示例

摘要

Growing interest in highly portable versatile flying platforms and recent advancements in microelectronics have led to the development of a scaled-down class of unmanned aerial vehicles known as micro air vehicles (MAVs) . The potential applications of MAVs could range from reconnaissance, terrain mapping, and search and rescue in both military and civilian settings. For these types of missions, hover/low-speed flight capability, high endurance, maneuverability, and the ability to tolerate environmental disturbances such as wind gusts are critical requirements for MAVs. Because MAVs operate in a unique aerodynamic regime (low Reynolds numbers) with a different set of mission requirements and challenges as compared to a full-scale aircraft, it is important to explore novel out-of-the-box vehicle concepts that might have the potential for superior performance at these scales. This note describes the vehicle design and control system development of one such MAV concept: the cyclocopter (shown in Fig. 1). The cyclocopter uses cycloidal rotors (cyclorotors), a horizontal axis propulsion concept that has many advantages such as higher aerodynamic efficiency , maneuverability, and high-speed forward flight capability when compared to a conventional helicopter rotor. A cyclorotor is essentially a rotating-wing system where the span of the blades runs parallel to the axis of its rotation. The pitch angle of each blade is varied cyclically by mechanical means such that the blade experiences positive geometric angles of attack at both the top and bottom halves of the azimuth cycle (Fig. 2). Varying the amplitude and phase of the cyclic blade pitch is used to change the magnitude and direction of the net thrust vector produced by the cyclorotor.
机译:对高度便携式的多功能飞行平台的日益增长的兴趣以及微电子学的最新发展导致了按比例缩小类别的被称为微型飞行器(MAV)的无人机的发展。 MAV的潜在应用范围包括侦察,地形制图以及军事和民用环境中的搜救。对于这些类型的任务,悬停/低速飞行能力,高耐力,机动性以及承受诸如阵风等环境干扰的能力是MAV的关键要求。由于MAV在独特的空气动力学状态下(雷诺数低)运行,与全尺寸飞机相比具有不同的任务要求和挑战,因此,探索新颖的开箱即用的概念可能很重要。在这些规模上具有卓越性能的潜力。本说明描述了一个这样的MAV概念的车辆设计和控制系统的开发:旋翼直升机(如图1所示)。旋翼直升机使用摆线转子(cyclorotor)(一种水平轴推进概念),与传统直升机旋翼相比,它具有许多优势,例如更高的空气动力学效率,机动性和高速向前飞行能力。旋翼飞机实质上是一种旋翼系统,其中叶片的跨度平行于其旋转轴延伸。每个叶片的俯仰角通过机械方式周期性变化,以使叶片在方位角周期的上半部和下半部都经历正的几何攻角(图2)。改变周期性叶片桨距的幅度和相位用于改变由回旋转子产生的净推力矢量的大小和方向。

著录项

  • 来源
    《Journal of Aircraft 》 |2014年第2期| 672-676| 共5页
  • 作者单位

    University of Maryland, College Park, Maryland 20742;

    University of Maryland, College Park, Maryland 20742;

    University of Maryland, College Park, Maryland 20742;

    University of Maryland, College Park, Maryland 20742;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号