首页> 外文期刊>Journal of Aircraft >Development-Fluid-Dynamics-Based Aerothermoelastic Simulation Capability with Application to Flight Vehicles
【24h】

Development-Fluid-Dynamics-Based Aerothermoelastic Simulation Capability with Application to Flight Vehicles

机译:基于流体动力学的气动热弹性仿真能力及其在飞行器中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Aerodynamic heating on structural surfaces plays an important role in the aeroelastic stability of flight vehicles, particularly in a high-temperature environment. The thermal effects of high-speed flow, obtained from a heat-conduction analysis, at the end of an unsteady time step are incorporated in the model solution, which in turn affects the unsteady flow arising out of interaction of the elastic structure with the air. This paper describes the development, implementation, and application of a highly integrated computational-fluid-dynamics-based aerothermoelastic analysis capability and the resulting code. The associated methodology employs the common finite element discretization for both fluid and structure disciplines using unstructured grids. An aeroelastic matrix formulation that uses a transpiration technique in lieu of aerodynamics mesh updating affects an efficient and accurate simulation of the aerothermoelastic phenomenon. The first example problem of a cantilever wing demonstrates the possible severity of thermal effects on a flutter mechanism. The second example of the X-43 hypersonic flight vehicle shows that the current procedure and the code can effectively solve complex practical problems with moderate computational resources. The accuracy and relative efficiency of the computational-fluid-dynamics and structural solutions are verified using actual flight and ground vibration tests.
机译:结构表面的气动加热在飞行器的气动弹性稳定性中起着重要作用,尤其是在高温环境中。从热传导分析中获得的高速流动的热效应,在不稳定的时间步结束时,被纳入模型解决方案中,这又会影响由弹性结构与空气相互作用而产生的不稳定的流动。本文介绍了高度集成的基于计算流体动力学的气动热弹性分析功能以及由此产生的代码的开发,实施和应用。关联的方法使用非结构化网格将常见的有限元离散化应用于流体和结构学科。使用蒸腾技术代替空气动力学网格更新的空气弹性基质配方会影响对空气热弹性现象的有效且准确的模拟。悬臂机翼的第一个示例问题证明了对颤振机构的热影响的可能严重性。 X-43高超音速飞行器的第二个例子表明,当前的程序和代码可以用适度的计算资源有效地解决复杂的实际问题。使用实际的飞行和地面振动测试验证了计算流体动力学和结构解决方案的准确性和相对效率。

著录项

  • 来源
    《Journal of Aircraft》 |2016年第2期|360-368|共9页
  • 作者单位

    NASA, Armstrong Flight Res Ctr, Res Engn Directorate, Edwards AFB, CA 93523 USA;

    Calif State Univ Los Angeles, Dept Mech Engn, Los Angeles, CA 90032 USA;

    Norfolk State Univ, Dept Engn, Norfolk, VA 23504 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:25:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号