首页> 外文期刊>Journal of the air & waste management association >Modeling emissions for three-dimensional atmospheric chemistry transport models
【24h】

Modeling emissions for three-dimensional atmospheric chemistry transport models

机译:为三维大气化学迁移模型建模排放

获取原文
获取原文并翻译 | 示例
           

摘要

Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scales and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed, and new methods to improve the spatiotemporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions such as national totals on appropriate grids. The wide area of natural emissions is also summarized, and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example, by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Implications: Emission data are probably the most important input for chemistry transport model (CTM) systems. They need to be provided in high spatial and temporal resolution and on a grid that is in agreement with the CTM grid. Simple methods to distribute the emissions in time and space need to be replaced by sophisticated emission models in order to improve the CTM results. New methods, e.g., for ammonia emissions, provide grid cell-dependent temporal profiles. In the future, large data fields from traffic observations or satellite observations could be used for more detailed emission data.
机译:空气质量差仍然是世界许多地方对人类健康的威胁。为了评估减少排放和改善空气质量的措施,许多研究机构和公共机构都使用了三维大气化学迁移模型系统。这些模型需要以适当的时空分辨率作为输入的精确排放数据。本文回顾了全球和区域范围内使用最广泛的排放清单,并探讨了用于准备清单数据模型的方法。讨论了为每个排放部门使用标准时间剖面的缺点,并提出了改善排放时空分布的新方法。这些方法通常既不是自上而下的方法也不是自下而上的方法,而是可以视为混合方法,该方法使用有关排放过程的详细信息来导出空间变化的时间排放轮廓。这些配置文件随后用于在适当的网格上分配大量排放量,例如全国总量。还概述了大范围的自然排放,并描述了计算方法。几乎所有类型的自然排放物都依赖于气象信息,这就是为什么它们在时间和空间上变化很大,并且经常在化学传输模型本身中进行计算的原因。最后,本文展望了改进模型就绪排放数据的新方法的前景,例如,通过使用有关道路交通流量的外部数据库或卫星数据来确定实际土地使用或叶面积。在排放模式快速变化的世界中,似乎合适的是使用新型统计和观察数据来创建详细的排放数据集并保持排放清单最新。含义:排放数据可能是化学传输模型(CTM)系统最重要的输入。需要以高空间和时间分辨率并在与CTM网格一致的网格上提供它们。为了改善CTM结果,需要用复杂的排放模型代替在时间和空间上分布排放的简单方法。例如用于氨排放的新方法提供了依赖于网格的时间分布图。将来,可以将来自交通观测或卫星观测的大数据字段用于更详细的排放数据。

著录项

  • 来源
  • 作者单位

    Chemistry Transport Modelling Department, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany;

    Chemistry Transport Modelling Department, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany;

    Chemistry Transport Modelling Department, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany;

    Chemistry Transport Modelling Department, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany;

    Climate, Air, and Sustainability Department, TNO, Netherlands Organisation for Applied Scientific Research, Utrecht, The Netherlands;

    Climate, Air, and Sustainability Department, TNO, Netherlands Organisation for Applied Scientific Research, Utrecht, The Netherlands;

    Climate, Air, and Sustainability Department, TNO, Netherlands Organisation for Applied Scientific Research, Utrecht, The Netherlands;

    Department of Physical Oceanography and Instrumentation, Leibniz-lnstitut fur Ostseeforschung Warnemiinde, Rostock, Germany;

    Computational Exposure Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA;

    Chemistry Transport Modelling Department, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号