...
首页> 外文期刊>Journal of the air & waste management association >Toward verifying fossil fuel CO_2 emissions with the CMAQ model: Motivation, model description and initial simulation
【24h】

Toward verifying fossil fuel CO_2 emissions with the CMAQ model: Motivation, model description and initial simulation

机译:使用CMAQ模型验证化石燃料的CO_2排放:动机,模型描述和初始模拟

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO_2 spatiotemporal variability and verify CO_2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO_2. This paper presents methods, input data, and initial results for CO_2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO_2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO_2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver, CO, the CMAQ model using hourly varying, high-resolution CO_2 fossil-fuel emissions from the Vulcan inventory and CarbonTracker optimized NEE reproduced the observed diurnal profile of CO_2 reasonably well but with a low bias in the early morning. The spatial distribution of CO_2 was found to correlate with NO_x, SO_2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO_2 observations and understand CO_2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO_2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO_2 spatiotemporal variability and various uncertainties in the future. Implications: Atmospheric CO_2 has long been modeled and studied on continental to global scales to understand the global carbon cycle. This work demonstrates the potential of modeling and studying CO_2 variability at fine spatiotemporal scales with CMAQ, which has been applied extensively, to study traditionally regulated air pollutants. The abundant observational records of these air pollutants and successful experience in studying and reducing their emissions may be useful for verifying CO_2 emissions. Although there remains much more to further investigate, this work opens up a discussion on whether and how to study CO_2 as an air pollutant.
机译:受以下问题的启发:我们是否需要使用最新的区域化学运输模型(CTM)以及如何促进CO_2时空变异的表征并验证CO_2化石燃料的排放,我们首次采用了社区多尺度空气质量( CMAQ)模型来模拟CO_2。本文介绍了2007年10月在美国连续使用CMAQ进行CO_2模拟的方法,输入数据和初步结果。进行了建模实验,以了解化石燃料排放,生物圈-大气交换和气象学在调节大气中的作用。连续美国地表附近CO_2的空间分布。使用三组净生态系统交换(NEE)通量作为输入,以评估NEE的不确定性对CMAQ模拟的CO_2浓度的影响。来自全国六个高塔站点的观测数据用于评估模型性能。特别是在Boulder大气天文台(BAO),这是一个从纽约州丹佛市接收城市排放物的高塔工地,使用Vulcan清单中每小时变化的高分辨率CO_2化石燃料排放量的CMAQ模型和CarbonTracker优化的NEE再现了在清晨观测到的CO_2的日廓线相当好,但偏差较小。由于其相似的化石燃料排放源和共同的运输过程,发现CO_2的空间分布与NO_x,SO_2和CO相关。来自CMAQ的这些初步结果证明了使用区域CTM来帮助解释CO_2观测值和理解CO_2时空变化的潜力。在CMAQ中模拟全套空气污染物的能力也将有助于研究将其用作CO_2源归因的示踪剂。这项工作是概念的证明,是将来更全面地检查CO_2时空变异性和各种不确定性的基础。启示:长期以来一直在模拟大气CO_2并在大陆到全球范围内进行研究,以了解全球碳循环。这项工作证明了使用CMAQ在精细的时空尺度上建模和研究CO_2变异性的潜力,该模型已被广泛应用于研究传统上受管制的空气污染物。这些空气污染物的丰富观察记录以及研究和减少其排放的成功经验可能对验证CO_2排放很有帮助。尽管还有很多事情需要进一步研究,但这项工作开启了关于是否以及如何研究作为空气污染物的CO_2的讨论。

著录项

  • 来源
  • 作者单位

    Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA;

    Combustion Research Facility (CRF), Sandia National Laboratories, 7011 East Ave., Livermore, CA 94550, USA;

    U.S. Environmental Protection Agency, National Center for Environmental Assessment, Research Triangle Park, NC, USA;

    Georgia Department of Natural Resources, Atlanta, GA, USA;

    Georgia Department of Natural Resources, Atlanta, GA, USA;

    Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA;

    Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA,Department of Hydraulic Engineering, Tsinghua University, Beijing, China;

    Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号