...
首页> 外文期刊>Journal of aerospace engineering >Use of Custer Channel Wings-Wing Ducts on Small UAVs
【24h】

Use of Custer Channel Wings-Wing Ducts on Small UAVs

机译:在小型无人机上使用卡斯特通道机翼-机翼风管

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The strong variations in lift that occur with changes in forward speed lead to one of the fundamental difficulties in aircraft design: how to provide sufficient lift at landing and take-off without having oversized wings for cruise conditions. This fundamental problem is generally tackled using two approaches. First, by providing flaps and other high-lift devices, extra lift can be generated during landing and take-off, albeit at the cost of extra drag and complexity. Second, by using long and smooth runways, higher landing and take-off speeds can be tolerated, closing the gap between these speeds and those of operational flight. Even so, it is common for aircraft flying in the cruise condition to be operating with rather small main wing angles of attack (AoAs) compared with those at stall, implying that smaller wings would be desirable if acceptable landing and take-off could be achieved. A number of designers have attempted to tackle this problem with various forms of powered lift augmentation. This paper re-examines the idea of the Custer wing duct, also known as a channel wing, here applied to small unmanned air vehicles (UAVs). Such aircraft are generally not operated from long smooth runways and rarely have complex high-lift systems in their wings. It is shown that by using suitable ducts around the propellers, startlingly good take-off and landing performance can be achieved, and that suitable ducts can be readily incorporated into small UAVs with the use of 3D printing (selective laser sintering) for their manufacture. Computational fluid dynamics (CFD) analysis, wind tunnel tests, and flight trials of a Custer channel wing UAV are described. (C) 2015 American Society of Civil Engineers.
机译:随着前进速度的变化而发生的升力的强烈变化导致飞机设计的基本困难之一:如何在着陆和起飞时提供足够的升力而又没有用于巡航条件的机翼过大。通常使用两种方法解决这个基本问题。首先,通过提供襟翼和其他高升力装置,尽管会增加阻力和复杂性,但在着陆和起飞期间仍会产生额外的升力。其次,通过使用长而平滑的跑道,可以容许更高的着陆和起飞速度,从而缩小了这些速度与实际飞行速度之间的差距。即便如此,与处于失速状态的飞机相比,在巡航状态下飞行的飞机通常以较小的主翼迎角(AoA)运行,这意味着如果能够实现可接受的着陆和起飞,则希望有较小的机翼。许多设计师已尝试通过各种形式的动力提升设备来解决此问题。本文重新审视了卡斯特机翼风道(也称为通道机翼)的概念,此处将其应用于小型无人飞行器(UAV)。这样的飞机通常不能在长而平滑的跑道上操作,并且机翼很少具有复杂的高升力系统。结果表明,通过在螺旋桨周围使用合适的导管,可以实现惊人的良好起飞和着陆性能,并且可以使用3D打印(选择性激光烧结)将合适的导管轻松地集成到小型无人机中。描述了计算流体动力学(CFD)分析,风洞测试和Custer通道机翼无人机的飞行试验。 (C)2015年美国土木工程师学会。

著录项

  • 来源
    《Journal of aerospace engineering》 |2016年第3期|04015059.1-04015059.10|共10页
  • 作者

    Keane P. M.; Keane A. J.;

  • 作者单位

    Univ Oxford, Oxford OX1 1DW, England;

    Univ Southampton, Southampton SO17 1BJ, Hants, England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号