...
首页> 外文期刊>Journal of Aeronautics Astronautics and Aviation >Turbulent Flow and Heat Transfer in a Rotating SquarernDuct with Scale-Like Cavities on Two Opposite Walls
【24h】

Turbulent Flow and Heat Transfer in a Rotating SquarernDuct with Scale-Like Cavities on Two Opposite Walls

机译:旋转方管中带有湍流和传热的两个相对壁上有鳞片状腔

获取原文
获取原文并翻译 | 示例
           

摘要

Modern advanced gas turbine blades are subjectedrnto high thermal stress due to increasing operatingrntemperature. Consequently, efficient internal coolingrntechniques such as film cooling and internal cooling [1]rnare required to maintain allowable blade temperaturesrnand acceptable blade durability. The heat transferrncharacteristics in the internal coolant channels of gasrnturbine blades are affected by the geometries of channelrncross-section, turbulators, dimples [2], rotation, etc.rnPrevious researches mainly focus on heat transferrnaugmentation with rib turbulators. Nonetheless, thernrecent study of dimples has drawn new interests [3].rnIn the present study, numerical studies of turbulentrnflow and heat transfer in a rotating square duct withrnscale-like cavity dimples on two opposite walls arernperformed. The Reynolds number (Re), based on channelrnhydraulic diameter and bulk mean velocity, is fixed atrn10000 and the rotation number (Ro) ranges from 0 to 0.2.rnTurbulence closure associated with 3-D steady-staternincompressible Reynolds-averaged Navier-Stokesrn(RANS) equations was attained by simultaneouslyrnsolving Reynolds Stress Equations [4]. The ReynoldsrnStress Model (RSM) can respond to the effects ofrnstreamline curvature and anisotropy without the need forrnexplicit modeling. Enhanced wall treatment is adopted tornresolve the near wall region. The convection andrndissipation term are discretized with second-orderrnupwind and central difference scheme, respectively.rnComputed results are presented in terms of Nusseltrnnumber contours, secondary flow patterns, and near wallrnhelical flows for stationary (Ro = 0.0) and rotating (Ro =rn0.2) conditions. In stationary condition, the main flowrnand heat transfer are symmetric, and the secondary flowrnpatterns and helical flows (spring-like structures) near thernwall are induced by Reynolds stress anisotropy andrndimple. As Ro increases from 0 to 0.2, the main flow isrnskewed to the trailing wall and a counter-rotating vortexrnpair pattern is formed because of Coriolis force.rnMoreover, the helical flow near the trailing wall isrnenhanced by rotation. The near wall helical flowrnaugments the wall heat transfer, especially the trailingrnwall.
机译:由于工作温度升高,现代先进的燃气涡轮叶片承受高热应力。因此,需要有效的内部冷却技术,例如薄膜冷却和内部冷却[1],以维持允许的叶片温度和可接受的叶片耐久性。燃气轮机叶片内部冷却剂通道中的传热特性受通道截面,湍流器,酒窝[2],旋转等的几何形状的影响。以前的研究主要集中在肋湍流器的传热控制上。尽管如此,最近对酒窝的研究仍引起了新的兴趣[3]。在本研究中,对旋转的方管中湍流和传热的数值研究在两个相对壁上进行了类似鳞片状的空腔酒窝的研究。基于通道液压直径和整体平均速度的雷诺数(Re)固定为10000,旋转数(Ro)的范围从0到0.2。与3-D稳态稳态不可压缩雷诺平均Navier-Stokesrn(RANS)相关的湍流闭合方程是通过同时求解雷诺应力方程[4]而获得的。雷诺应力模型(RSM)可以响应流线曲率和各向异性的影响,而无需进行精确的建模。采用增强的壁处理以解决近壁区域。对流和耗散项分别用二阶迎风和中心差分方案离散化。rn计算了计算结果,分别针对了静止(Ro = 0.0)和旋转(Ro = rn0.2)的努塞尔特数等值线,二次流型和近壁螺旋流。 ) 条件。在静止状态下,主流动和传热是对称的,并且在雷壁附近的二次流动模式和螺旋流动(类似弹簧的结构)是由雷诺应力各向异性和凹痕引起的。当Ro从0增加到0.2时,主流流向尾壁偏斜,并且由于科里奥利力而形成了反向旋转的涡对模式。此外,尾壁附近的螺旋流由于旋转而增强。近壁螺旋流阻碍了壁的传热,特别是尾壁的传热。

著录项

  • 来源
  • 作者单位

    Department of Power Mechanical Engineering, National Tsing Hua UniversityNo. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C.;

    Department of Power Mechanical Engineering, National Tsing Hua UniversityNo. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C.;

    Department of Power Mechanical Engineering, National Tsing Hua UniversityNo. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C.;

    Department of Power Mechanical Engineering, National Tsing Hua UniversityNo. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号