...
首页> 外文期刊>Joule >Microstructure engineering of solid-state composite cathode via solvent-assisted processing
【24h】

Microstructure engineering of solid-state composite cathode via solvent-assisted processing

机译:通过溶剂辅助加工固态复合阴极的微观结构工程

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Microstructure engineering of composite cathodes in all-solid-state batteries is critical to ensure efficient electronic and ionic percolation networks. Organic-based solid-state batteries have recently emerged with impressive material-level specific energy and cycling stability. However, the low mass fraction of active materials in state-of-the-art organic cathodes severely limits electrode-level specific energy. In this work, we reveal the unfavorable microstructure as the origin of poor performance at a high fraction of active materials; a solvent-assisted process is then devoted to rectifying the microstructure, increasing the active materials fraction from 20 to 40 wt % while maintaining high utilization (97.6%). The resulting electrode-level specific energy of 302 Wh kg−1is 83% higher than state-of-the-art solid-state batteries with organic cathodes. On the basis of the unique interphase chemistry between pyrene-4,5,9,10-tetraone and lithium thiophosphate, a potential-dependent reversible interphase evolution model is proposed. This work illustrates the critical role of microstructure engineering in optimizing novel active materials for all-solid-state batteries.
机译:全固态电池中复合阴极的微观结构工程至关重要,确保有效的电子和离子渗透网络。最近有机固态电池具有令人印象深刻的材料级特定能量和循环稳定性。然而,最先进的有机阴极中的活性材料的低质量分数严重限制电极级特异性能量。在这项工作中,我们揭示了不利的微观结构作为在高级活性材料的差的性能的起源;然后致专用溶剂辅助工艺循环微观结构,将活性物质馏分从20%〜40wt%增加,同时保持高利用率(97.6%)。由具有有机阴极的最新的固态电池高出302WH-1IS的电极级特异性能量为83%。基于芘-4,5,9,10-四酮和硫代磷酸锂之间的独特相互化学,提出了一种潜在的可逆差异进化模型。这项工作说明了微观结构工程在优化全固态电池的新型活性材料方面的关键作用。

著录项

  • 来源
    《Joule》 |2021年第7期|1845-1859|共15页
  • 作者单位

    Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH) University of Houston;

    Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH) University of Houston;

    Department of Materials Science and NanoEngineering Rice University;

    SIMS laboratory Shared Equipment Authority Rice University;

    Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH) University of Houston;

    Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH) University of Houston;

    Department of Materials Science and NanoEngineering Rice University;

    Department of Materials Science and NanoEngineering Rice University;

    Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH) University of Houston;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    solid-state battery; microstructure engineering; composite cathode; cathode electrolyte interphase;

    机译:固态电池;微观结构工程;复合阴极;阴极电解质间相互作用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号