首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 2 >Calculation of Abraham descriptors from solvent–water partition coefficients in four different systems; evaluation of different methods of calculation
【24h】

Calculation of Abraham descriptors from solvent–water partition coefficients in four different systems; evaluation of different methods of calculation

机译:根据四个系统中的溶剂-水分配系数计算亚伯拉罕描述子;评估不同的计算方法

获取原文
获取原文并翻译 | 示例
       

摘要

The use of properties that are easy to measure in order to calculatenor estimate properties that are difficult to measure is a wellknownnmethod in most fields of chemistry and biochemistry.nWith the advance of modern techniques such as combinatorialnchemistry, high throughput screening has become very importantnand therefore estimates of physical properties fromnstructure by calculations that can be performed rapidly arenof primary importance. A large number of transport-relatednprocesses involve either the equilibrium transfer (K or P) or thenrate of transfer (k) of a solute from one phase to another. Sincenlog K (or log P) and log k are free-energy related, Abrahamnand co-workers formulated a number of solute properties orndescriptors that are also free-energy related and could be usednfor the correlation of log K and log k values.nThe original work of Kamlet and Taft and co-workers 1,2nshowed that it was indeed possible to define a rather smallnnumber of descriptors that could be combined in a linear waynfor the correlation of solute properties. After considerablenpreliminary work,3,4 Abraham and co-workers, succeeded innconstructing a new and more rigorous set of five solutendescriptors,5–10 specified as follows. E is an excess molar refractionnthat is obtained from refractive index for solutes that arenliquid at 20 u0002C. For solids, the refractive index of the hypotheticalnliquid at 20 u0002C can be calculated, or E can be obtainednby the summation of fragments or substructures. S is thendipolarity/polarizability that can be obtained from gas liquidnchromatographic measurements on polar stationary phases, ornmore generally from water–solvent partition coefficients. A andnB are the overall or effective hydrogen bond acidity and basicitynthat are most easily obtained from water–solvent partitions,n† Present address: AstraZeneca Pharmaceuticals, Mereside, AlderleynPark, Macclesfield, Cheshire, UK SK10 4TG.nand V is the McGowan characteristic volume11 that can easilynbe calculated from bond and atom contributions.8 The range ofnsolutes for which descriptors are currently available is now quitenlarge, and encompasses compounds as far as helium, hydrogen,nnitrogen, etc. on one hand and drugs, environmental pollutantsnand pesticides on the other.nThese solute descriptors can be combined in a linear freenenergy relationship [eqn. (1)]. The dependent variable, log SP, isna solute property in a given system. For example, it might be lognP, for a set of solutes in a given water–solvent partition system.nThe coefficients in the equations are found by the method ofnmultiple linear regression.nDescriptors for a large number of solutes have been obtainednfrom experimental data; the maximum and minimum rangesnof these descriptors in our database are shown in Table 1. Thensolute descriptors represent the solute influence on variousnsolute–solvent phase interactions. Hence, the regression coefficientsnc, e, s, a, b and v correspond to the complementaryneffect of the phases on these interactions. The coefficients cannthen be regarded as system constants which characterize thenphase andAn example to illustrate the chemical information containednin the system constants is partition of solutes between twonphases; the system constants will reflect differences in propertiesnof the two phases, and hence can take positive or negativenvalues. The important water–octanol 12 system is characterizednby eqn. (2).n(n = 613, r = 0.9974, SD = 0.116, F = 23161.6)nThus, octanol (actually, wet octanol) is revealed to be ablento interact with π- and n-electron pairs more than is watern(positive e-coefficient), but is less dipolar/polarizable than watern(hence the negative s-coefficient). Octanol is as strong anhydrogen-bond base as is water (almost zero a-coefficient),nbut is a weaker hydrogen-bond acid (negative b-coefficient). Thenlarge v-coefficient means that octanol is able to interact withnsolutes by dispersion forces and/or that the energy required toncreate a given sized cavity in octanol is relatively low.nAny application of the general solvation equation [eqn. (1)]ndepends on the availability of the solute descriptors, and thenneed to calculate descriptors for new compounds will always benof primary importance. As explained earlier, the descriptor Vncan be calculated quite simply for any structure from thenmolecular formula and the number of rings in the molecule,nusing the algorithm of Abraham for the number of bonds innthe molecule.8 The E descriptor can be calculated from thenrefractive index at 20 u0002C, using either the observed refractivenindex for a liquid, or a calculated refractive index for the liquid.nThis descriptor can also be estimated by the addition ofnfragment values (substructures). The remaining three descriptorsnS, A and B have to be obtained by analogy to other compoundsn(within a homologous series for example), by fragmentnaddition 13,14 and by experimental measurements of physicochemicalnproperties such as log P values in a number of water–nsolvent systems.nIn order to obtain reliable descriptors from log P valuesnit is necessary to have at least three systems as different asnpossible. The difference in the physical properties of solventnsystems is reflected in the coefficients obtained for eachnsolvation equation as described earlier. Practical considerationsnare also of great importance. Such considerations includentoxicity, availability, viscosity and volatility of each solventnsystem. Apart from the physical considerations however, anmethod for categorising the equations is needed. Ishihamanet al.15 proposed a vector (v) methodology that is defined forna particular solvation equation, [eqn. (1)], as follows. Let vi =n(ei, si, ai, bi, vi). Then the analogy between any two or more givennsolvation equations SPi and SPj is expressed as cos θij betweennvi and vj as follows:nAs the linear correlation between SPi and SPj becomes better,nthe value of cos θ becomes closer to 1. An Excel macro programnwas written to automatically calculate cos θ and θ andndisplay the results in a matrix. The larger the θ value, the lessncorrelation there is between SPi and SPj. Identical equationsnwould give a cos θ value of 1 (Table 2). The four systems chosennfor use in the measurement of partition coefficients werenoctanol, chloroform, cyclohexane and toluene, which fulfil thencriteria set at the beginning of this work, and which have largenθ values between pairs of solvents.
机译:在大多数化学和生物化学领域中,使用易于测量的特性来计算或估算难以测量的特性是大多数化学和生物化学领域中众所周知的方法。n随着组合化学等现代技术的发展,高通量筛选变得非常重要,因此估算通过可快速执行的计算来确定结构的物理性质不是最重要的。大量与运输有关的过程涉及溶质从一相到另一相的平衡转移(K或P)或转移速率(k)。由于nlog K(或log P)和log k与自由能有关,因此Abrahamnand同事制定了许多与自由能有关的溶质性质或描述子,可用于log K和log k值的相关性。 Kamlet和Taft及其同事1,2n的工作表明,确实有可能定义相当少量的描述符,这些描述符可以线性方式组合以实现溶质性质的相关性。经过大量的初步工作[3,4]之后,亚伯拉罕和他的同事成功地构建了一套新的,更严格的5种溶质描述符,5-10如下所示。 E是过量的摩尔折射率n,它是从在20 u0002C时不是液体的溶质的折射率获得的。对于固体,可以计算假设液体在20 u0002C的折射率,或者可以通过碎片或子结构的总和获得E。那么,S是偶极/极化率,可以通过在极性固定相上的气相色谱测量获得,或者通常从水-溶剂分配系数获得。 A和nB是最容易从水-溶剂分区获得的总体或有效氢键酸度和碱性n,n†当前地址:英国阿斯利康制药,Mereside,AlderleynPark,Macclesfield,柴郡,SK10 4TG。可以很容易地通过键和原子的贡献来计算。8目前可获得的描述词的固溶体的范围非常大,一方面包括氦,氢,氮等化合物,另一方面包括药物,环境污染物和农药。这些溶质描述子可以线性自由能关系组合。 (1)]。给定系统中的因变量log SP是isna溶质属性。例如,对于给定的水-溶剂分配系统中的一组溶质,可能为lognP。n方程中的系数通过n线性回归法求出。n从实验数据中获得了大量溶质的描述;表1显示了这些描述符在数据库中的最大和最小范围。然后,溶质描述符表示溶质对各种溶质-溶剂相相互作用的影响。因此,回归系数nc,e,s,a,b和v对应于这些相互作用的相位的互补效应。不能将系数视为表征相的系统常数,并举例说明系统常数中包含的化学信息是在两个相之间分配溶质。系统常数将反映两相性质的差异,因此可以取正值或负值。重要的水-辛醇12系统的特征在于eqn。 (2).n(n = 613,r = 0.9974,SD = 0.116,F = 23161.6)n因此,显示辛醇(实际上是湿的辛醇)与水的π-和n-电子对的相互作用更大(正e系数),但偶极子/可极化性不如watern(因此负s系数)。辛醇与水一样具有很强的氢键结合碱(a系数几乎为零),而氢键酸则较弱(b系数负)。则较大的v系数意味着辛醇能够通过分散力与溶质相互作用,并且/或者在辛醇中创建给定尺寸的腔所需的能量相对较低。 (1)]取决于溶质描述符的可用性,然后需要计算新化合物的描述符将始终是最重要的。如前所述,可以使用亚伯拉罕算法计算分子中的键数,从而根据分子式和分子中环的数量,很简单地计算出描述符Vn。8E描述符可以从下式的折射率计算得出20 u0002C,使用观察到的液体折射率或计算出的液体折射率。n此描述符也可以通过添加碎片值(子结构)来估算。其余三个描述符nS,A和B必须类似于其他化合物n(例如在同源序列内)通过片段n加成13获得[14],以及通过物理化学性质的实验测量,例如在许多水溶剂系统中的log P值。n为了从log P值获得可靠的描述子,必须至少拥有三个不同的系统。如前所述,溶剂系统的物理性质的差异反映在每个溶剂方程获得的系数中。实际考虑也很重要。这些考虑因素包括每种溶剂系统的毒性,可利用性,粘度和挥发性。然而,除了物理上的考虑之外,还需要用于对方程式进行分类的方法。 Ishihamanet等人15提出了针对特定溶剂化方程[eqn。 (1)],如下。设vi = n(ei,si,ai,bi,vi)。然后将两个或多个给定的求解方程SPi和SPj之间的类比表示为nvi和vj之间的cosθij,如下所示:n随着SPi和SPj之间的线性相关性变好,n cosθ的值变得更接近1。编写了一个Excel宏程序n自动计算cosθ和θ并将结果显示在矩阵中。 θ值越大,SPi和SPj之间的相关性越小。相同的方程将使cosθ值为1(表2)。选择用于分配系数测量的四个系统为辛醇,氯仿,环己烷和甲苯,它们满足本研究开始时设定的标准,并且在成对的溶剂之间具有较大的θ值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号