...
首页> 外文期刊>Japanese Journal of Applied Physics. Part 1, Regular Papers & Short Notes >Reliability of Strained SiGe Channel p-Channel Metal-Oxide-Semiconductor Field-Effect Transistors with Ultra-Thin (EOT = 3.1 nm) N_2O-Annealed SiN Gate Dielectric
【24h】

Reliability of Strained SiGe Channel p-Channel Metal-Oxide-Semiconductor Field-Effect Transistors with Ultra-Thin (EOT = 3.1 nm) N_2O-Annealed SiN Gate Dielectric

机译:具有超薄(EOT = 3.1 nm)N_2O退火的SiN栅极介电层的应变SiGe沟道p沟道金属氧化物半导体场效应晶体管的可靠性

获取原文
获取原文并翻译 | 示例

摘要

The p-channel metal-oxide-semiconductor field-effect transistor (pMOSFET) with 50-nm-thick Si_(0.85)Ge_(0.15) channel and ultra-thin (EOT = 3.1 nm) N_2O-annealed SiN gate dielectric has been shown to have well-performing on/off and output characteristics. Several methodologies for the device reliability characterization, such as stress-induced-leakage-current (SILC), drain-avalanche-hot-carrier (DAHC) injection, channel hot-carrier (CHC) injection and negative-bias-temperature-instability (NBTI), have been used and the results were compared. In terms of the long-term degradation, the excellent quality of the N_2O-annealed SiN gate dielectric can be firmly obtained because only negligible degradations have been found after stressing no matter which technique was employed. Even so, the experimental results have been compared and we found that the HC degradation is worse than the NBTI degradation and the channel-hot-carrier (CHC) stressing is the worst case for all kinds of reliability testing. Meanwhile, we have also verified that the interface state generation is the dominant mechanism responsible for the HC-induced degradation while the electron trapping dominates the device degradation for the NBTI stressing.
机译:显示了具有50nm厚Si_(0.85)Ge_(0.15)沟道和超薄(EOT = 3.1 nm)N_2O退火的SiN栅极电介质的p沟道金属氧化物半导体场效应晶体管(pMOSFET)具有良好的开/关和输出特性。器件可靠性表征的几种方法,例如应力感应漏电流(SILC),漏极雪崩热载流子(DAHC)注入,沟道热载流子(CHC)注入和负偏置温度不稳定性( NBTI),并比较了结果。就长期降解而言,无论采用哪种技术,在应力作用下仅发现可忽略的降解,因此可以牢固地获得N_2O退火的SiN栅极电介质的优良品质。即使如此,实验结果也进行了比较,我们发现HC的劣化比NBTI的劣化更严重,而信道热载波(CHC)的压力对于所有类型的可靠性测试来说都是最坏的情况。同时,我们还验证了界面态的产生是造成HC诱导降解的主要机制,而电子捕获则主要是NBTI应力导致的器件降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号