首页> 外文期刊>Journal of Chemical Physics >The central cell model: A mesoscopic hopping model for the study of the displacement autocorrelation function
【24h】

The central cell model: A mesoscopic hopping model for the study of the displacement autocorrelation function

机译:中央单元模型:介观跳变模型,用于研究位移自相关函数

获取原文
获取原文并翻译 | 示例
           

摘要

On the mesoscale, the molecular motion in a microporous material can be represented as a sequence of hops between different pore locations and from one pore to the other. On the same scale, the memory effects in the motion of a tagged particle are embedded in the displacement autocorrelation function (DACF), the discrete counterpart of the velocity autocorrelation function (VACF). In this paper, a mesoscopic hopping model, based on a lattice-gas automata dynamics, is presented for the coarse-grained modeling of the DACF in a microporous material under conditions of thermodynamic equilibrium. In our model, that we will refer to as central cell model, the motion of one tagged particle is mimicked through probabilistic hops from one location to the other in a small lattice of cells where all the other particles are indistinguishable; the cells closest to the one containing the tagged particle are simulated explicitly in the canonical ensemble, whereas the border cells are treated as mean-field cells in the grand-canonical ensemble. In the present paper, numerical simulation of the central cell model are shown to provide the same results as a traditional lattice-gas simulation. Along with this a mean-field theory of self-diffusion which incorporates time correlations is discussed. © 2011 American Institute of Physics Article Outline INTRODUCTION LOCAL RANDOMIZATION AND PROPAGATION Randomization Propagation JUMPS AND TIME CORRELATIONS THE CENTRAL CELL MODEL Generating the initial configuration Time evolution ANALYSIS OF THE SELF-DIFFUSION PROCESS: THE DISPLACEMENT AUTOCORRELATION FUNCTION Contribution at the initial time Contribution after one iteration: A probabilistic interpretation of the normalized DACF Contribution after several iterations MEAN-FIELD DACF: THEORETICAL PREDICTION OF SELF-DIFFUSIVITY Exact DACF in the limit of infinite dilution Approximated mean-field DACF and self-diffusivity at arbitrary loading Mean-field jump randomization Mean-field propagation Mean-field jump probabilities DISCUSSION OF THE MEAN-FIELD RESULTS Memory preserved in exit and inner sites Memory-preserving backscattering CONCLUSIONS
机译:在中尺度上,微孔材料中的分子运动可以表示为不同孔位置之间以及从一个孔到另一个孔的跳跃序列。在相同的尺度上,标记粒子运动中的记忆效应被嵌入到位移自相关函数(DACF)中,它是速度自相关函数(VACF)的离散对应物。本文提出了一种基于晶格气体自动机动力学的介观跳变模型,用于在热力学平衡条件下对微孔材料中的DACF进行粗粒度建模。在我们的模型中,我们将其称为中心细胞模型,其中一个标记粒子的运动是通过概率跳从一个位置到另一个位置的概率跃点模仿的,而该细胞在一个小的所有其他粒子都无法区分的小细胞格中。在规范合集中显式地模拟最接近包含标记粒子的单元的单元格,而在大规范合集中将边界单元视为均值单元。在本文中,中央单元模型的数值模拟显示出与传统的晶格气体模拟相同的结果。除此之外,还讨论了一种包含时间相关性的自扩散平均场理论。 ©2011美国物理研究所文章大纲简介局部随机化和传播随机传播跳跃和时间相关性生成初始配置的中心细胞模型时间演化自扩散过程的分析:位移自相关函数在一个初始时间后的贡献:多次迭代后归一化DACF贡献的概率解释均值DACF:自扩散的理论预测无限稀释极限内的精确DACF任意载荷下的近似平均场DACF和自扩散率平均场跳跃随机化平均场传播平均场跳跃概率均场结果的讨论出口和内部站点保留的内存保留反向散射的内存结论

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号