首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >M3C2-EP: Pushing the limits of 3D topographic point cloud change detection by error propagation
【24h】

M3C2-EP: Pushing the limits of 3D topographic point cloud change detection by error propagation

机译:M3C2-EP:通过错误传播推动3D地形点云变化检测的限制

获取原文
获取原文并翻译 | 示例
           

摘要

The analysis of topographic time series is often based on bitemporal change detection and quantification. For 3D point clouds, acquired using laser scanning or photogrammetry, random and systematic noise has to be separated from the signal of surface change by determining the minimum detectable change. To analyse geomorphic change in point cloud data, the multiscale model-to-model cloud comparison (M3C2) approach is commonly applied, which provides a statistical significance test. This test assumes planar surfaces and a uniform registration error. For natural surfaces, the planarity assumption does not necessarily apply, in which cases the value of minimal detectable change (Level of Detection) is overestimated. To overcome these limitations, we quantify an uncertainty information for each 3D point by propagating the uncertainty of the measurements themselves and of the alignment uncertainty to the 3D points. This allows the calculation of 3D covariance information for the point cloud, which we use in an extended statistical test for equality of multivariate means. Our method, called M3C2-EP, gives a less biased estimate of the Level of Detection, allowing a more appropriate significance threshold in typical cases. We verify our method in two simulated scenarios, and apply it to a time series of terrestrial laser scans of a rock glacier at two different timespans of three weeks and one year. Over the three-week period, we detect significant change at 12.5% fewer 3D locations, while quantifying additional 25.2% of change volume, when compared to the reference method of M3C2. Compared with manual assessment, M3C2-EP achieves a specificity of 0.97, where M3C2 reaches 0.86 for the one-year timespan, while sensitivity drops from 0.72 for M3C2 to 0.60 for M3C2-EP. Lower Levels of Detection enable the analysis of high-frequency monitoring data, where usually less change has occurred between successive scans, and where change is small compared to local roughness. Our method further allows the combination of data from multiple scan positions or data sources with different levels of uncertainty. The combination using error propagation ensures that every dataset is used to its full potential.
机译:地形时间序列的分析通常基于衡量标准检测和量化。对于使用激光扫描或摄影测量的3D点云,通过确定最小可检测的变化,必须与表面改变的信号分离出来的随机和系统噪声。为了分析点云数据的地貌变化,通常应用了多尺度模型云比较(M3C2)方法,提供了统计显着性测试。该测试假定平面表面和均匀的注册误差。对于自然表面,平面假设不一定适用,在这种情况下,最小可检测变化(检测水平)的值被高估。为了克服这些限制,我们通过传播测量本身的不确定性以及3D点的对准不确定性来量化每个3D点的不确定性信息。这允许计算点云的3D协方差信息,我们在扩展统计测试中用于多变量装置的平等。我们称为M3C2-EP的方法,给出了对检测水平的偏差估计,允许更适当的意义阈值在典型的情况下。我们在两个模拟场景中验证了我们的方法,并将其应用于三个星期和一年的两个不同时间表的岩石冰川的一系列陆生激光扫描。在为期三周的时间内,我们在与M3C2的参考方法相比,定量较少的3D位置较少的12.5%的较小位置,同时量化额外的25.2%的变化量。与手动评估相比,M3C2-EP达到0.97的特异性,其中M3C2为一年时间率达到0.86,而M3C2-EP的敏感性下降0.72℃至0.60。较低级别的检测能够分析高频监测数据,在连续扫描之间通常发生变化通常更少的变化,与局部粗糙度相比,变化较小。我们的方法还允许来自多个扫描位置或数据源的数据组合,具有不同的不确定性。使用错误传播的组合可确保每个数据集用于其全部潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号