首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >A two-step mapping of irrigated corn with multi-temporal MODIS and Landsat analysis ready data
【24h】

A two-step mapping of irrigated corn with multi-temporal MODIS and Landsat analysis ready data

机译:灌溉玉米的两步映射,具有多时间修改和Landsat分析就绪数据

获取原文
获取原文并翻译 | 示例
           

摘要

Timely and reliable information about irrigated croplands is important for crop water stress analysis and studies of water, energy, and food security. This study mapped irrigated and non-irrigated corn at 30 m resolution for the state of Nebraska using a two-step multi-temporal image classification of MODIS and Landsat Analysis Ready Data (ARD). Starting from the drought year of 2012, when there was a high contrast between irrigated and non-irrigated fields, we first conducted image classification using the 250 m MODIS multi-temporal NDVI data. Training pixels were automatically derived, based on counties with predominant irrigated and non-irrigated cornfields. The MODIS-derived irrigated vs. non-irrigated map was further spatially filtered to generate training data covering the entire Nebraska to support automated Landsat ARD classification, footprint-by-footprint. Three classification algorithms of multi-layer perceptron (MLP) neural network, Random Forest (RF), and Support Vector Machine (SVM) were implemented to classify all available Landsat ARD images within the growing season (i.e. May to November). Given the issues of scanline corrector (SLC) error and cloud contamination, the provisional Landsat-based classifications were finally gap-filled to generate a seamless statewise irrigation map guided by decreasing cross-validation accuracy. Pixel-wise accuracy assessments showed similar overall accuracies of 89.6%, 89.3%, and 90.0% for MLP, RF, and SVM, respectively. They are 3-6% higher than a commonly used gap-filing procedure based on valid (cloud free) pixel count for growing season images. The estimated areas of irrigated corn from Landsat-based mapping were consistent with the 2012 USDA county level census data (R-2 = 0.97 and RMSE = 37.70 km(2)). Using the 2012 Landsat-derived irrigation map and the USDA's annual Cropland Data Layer as inputs, we further developed training data for annual irrigation mapping between 2013 and 2018. Pixel-wise assessment of the 2016 map showed reasonable overall accuracies of 78.4-79.6% for three classification algorithms. The annual maps yielded R-2 of 0.94-0.98 and RMSE values of 37.70-57.62 km(2) for various mapping years compared with USDA county statistics. These results suggest that our proposed two-step analytical method has a high potential for automated annual irrigation mapping at 30 m spatial resolution (especially for the arid and semi-arid western U.S.), providing clear field boundaries and irrigation frequency information that are vitally important for accurate agricultural water use analysis.
机译:关于灌溉农作物的及时可靠的信息对于作物水分压力分析和水,能源和粮食安全性是重要的。本研究使用Modis和Landsat分析准备数据(ARD)的两步多时间图像分类,在内布拉斯加州的状态下映射灌溉和非灌溉玉米。从2012年的干旱开始,当灌溉和非灌溉场之间存在高对比度时,我们首先使用250 m Modis多时间NDVI数据进行图像分类。基于具有主要灌溉和非灌溉玉米地面的县自动导出训练像素。 Modis衍生的灌溉与非灌溉图进一步被空间地滤波,以产生覆盖整个内布拉斯加州的训练数据,以支持自动化的Landsat ARD分类,逐个足迹。实施了三个分类算法(MLP)神经网络,随机森林(RF)和支持向量机(SVM)的分类算法,以将所有可用的Landsat ARD图像分类为生长季节(即5月至11月)。鉴于Scanline校正器(SLC)误差和云污染的问题,最终填充基于临时LANDSAT的分类,以通过降低交叉验证精度来产生无缝的状态灌溉图。 Pixel-Wise精度评估分别显示出类似的总精度为MLP,RF和SVM的89.6%,89.3%和90.0%。基于有效(无云)像素计数,它们比常用的差距归档程序高出3-6%,以获得生长季节图像。来自兰德斯特的映射的灌溉玉米的估计区域与2012年美国农业部县级人口普查数据一致(R-2 = 0.97和RMSE = 37.70公里(2))一致。利用陆地卫星2012衍生灌溉地图和美国农业部的年度耕地数据层作为输入,我们进一步发展2016年地图的2013年和2018年逐像素评估之间的年度灌溉映射训练数据显示,78.4-79.6%,合理的整体精度为三种分类算法。与USDA县统计数据相比,年度地图产生0.94-0.98的R-2和37.70-57.62km(2)的RMSE值。这些结果表明,我们所提出的两步分析方法具有30米空间分辨率的自动灌溉映射的高潜力(特别是对于干旱和半干旱西部美国),提供清晰的现场界限和灌溉频率信息准确农业用水分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号