首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6S code: A case study in the Marsabit District, Kenya
【24h】

Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6S code: A case study in the Marsabit District, Kenya

机译:在大气校正后使用6S代码计算NOAA / AVHRR数据的NDVI:6S代码:肯尼亚马萨比特区的案例研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A detailed atmospheric correction method for NOAA/AVHRR images using 6S code, easily accessible data sets, and the images themselves is proposed. The parameters that 6S requires (aerosol optical depth, precipitable water, ozone content, and elevation) were obtained using data from the images, the Total Ozone Mapping Spectrometer, and the GTOPO30 elevation data set, with reference to existing studies. The proposed methodology is validated through a case study of the Marsabit District, northern Kenya, which includes a broad range of precipitation, elevation, and vegetation types. The Normalized Difference Vegetation Index (NDVI) of desert, grassland, and forested areas from August 1987 to August 1988 was calculated after making the atmospheric correction. The intercept of the regression line, between the reflectance of before and after correction, is almost the same for each land cover type; while the slope is around 1.7 to 1.8 for grassland/bushland, it is smaller in the desert, where the range of the NDVI is limited. The NDVI in dense vegetation is more sensitive to the atmospheric correction, which is a result of the effect of path radiance. After the atmospheric correction, the range of NDVI increased, with the characteristic that the greater the NDVI, the larger was the atmospheric effect. In the case study, as well, the NDVI increased after the atmospheric correction, especially in pixels with initially high NDVI. A more detailed, entirely pixel-by-pixel, atmospheric correction requires individual pixel information for aerosol optical depth and precipitable water. This will be possible using data collected by the recent sensors such as MODIS.
机译:提出了使用6S代码,易于访问的数据集以及图像本身对NOAA / AVHRR图像进行大气校正的详细方法。参考现有研究,使用图像数据,臭氧总谱仪和GTOPO30海拔数据集获得6S所需的参数(气溶胶光学深度,可沉淀水,臭氧含量和海拔)。通过对肯尼亚北部马萨比特区的案例研究验证了所提出的方法,该案例包括范围广泛的降水,海拔和植被类型。 1987年8月至1988年8月,对沙漠,草地和森林地区进行了大气校正后,计算出其植被的归一化植被指数(NDVI)。对于每种土地覆盖类型,回归线的截距在校正前后的反射率之间几乎相同;草地/灌木丛的坡度在1.7至1.8左右,而在NDVI范围有限的沙漠中,坡度较小。由于路径辐射的影响,茂密植被中的NDVI对大气校正更敏感。大气校正后,NDVI的范围增大,其特征在于NDVI越大,大气效应越大。同样在案例研究中,在大气校正后,NDVI也会增加,尤其是在最初具有高NDVI的像素中。更详细的,逐像素的大气校正需要有关气溶胶光学深度和可沉淀水的单独像素信息。使用最近的传感器(如MODIS)收集的数据,这将成为可能。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号