...
首页> 外文期刊>The International journal of robotics research >High-dimensional stochastic optimal control using continuous tensor decompositions
【24h】

High-dimensional stochastic optimal control using continuous tensor decompositions

机译:使用连续张量分解的高维随机最优控制

获取原文
获取原文并翻译 | 示例
           

摘要

Motion planning and control problems are embedded and essential in almost all robotics applications. These problems are often formulated as stochastic optimal control problems and solved using dynamic programming algorithms. Unfortunately, most existing algorithms that guarantee convergence to optimal solutions suffer from the curse of dimensionality: the run time of the algorithm grows exponentially with the dimension of the state space of the system. We propose novel dynamic programming algorithms that alleviate the curse of dimensionality in problems that exhibit certain low-rank structure. The proposed algorithms are based on continuous tensor decompositions recently developed by the authors. Essentially, the algorithms represent high-dimensional functions (e.g. the value function) in a compressed format, and directly perform dynamic programming computations (e.g. value iteration, policy iteration) in this format. Under certain technical assumptions, the new algorithms guarantee convergence towards optimal solutions with arbitrary precision. Furthermore, the run times of the new algorithms scale polynomially with the state dimension and polynomially with the ranks of the value function. This approach realizes substantial computational savings in “compressible” problem instances, where value functions admit low-rank approximations. We demonstrate the new algorithms in a wide range of problems, including a simulated six-dimensional agile quadcopter maneuvering example and a seven-dimensional aircraft perching example. In some of these examples, we estimate computational savings of up to 10 orders of magnitude over standard value iteration algorithms. We further demonstrate the algorithms running in real time on board a quadcopter during a flight experiment under motion capture.
机译:运动计划和控制问题是嵌入式的,在几乎所有机器人应用程序中都是必不可少的。这些问题通常被表述为随机最优控制问题,并使用动态编程算法解决。不幸的是,大多数现有算法可确保收敛到最佳解决方案,这会遭受维度的诅咒:算法的运行时间随系统状态空间的大小呈指数增长。我们提出了新颖的动态规划算法,可减轻出现某些低等级结构的问题中的维数诅咒。提出的算法基于作者最近开发的连续张量分解。本质上,算法以压缩格式表示高维函数(例如,值函数),并以该格式直接执行动态编程计算(例如,值迭代,策略迭代)。在某些技术假设下,新算法可保证以任意精度收敛至最优解决方案。此外,新算法的运行时间与状态维呈多项式关系,与值函数的秩呈多项式关系。这种方法在“可压缩”问题实例中实现了可观的计算节省,其中值函数允许使用低秩近似。我们在一系列问题中演示了新算法,包括模拟的六维敏捷四轴飞行器操纵示例和七维飞机栖息的示例。在其中一些示例中,我们估计与标准值迭代算法相比,可节省多达10个数量级的计算量。在运动捕捉下的飞行实验过程中,我们进一步演示了在四轴飞行器上实时运行的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号