...
首页> 外文期刊>International Journal of Offshore and Polar Engineering >Cohesive Element Method to Level Ice-sloping Structure Interactions
【24h】

Cohesive Element Method to Level Ice-sloping Structure Interactions

机译:凝固冰倾斜结构相互作用的凝聚元素方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

During the interactions between level ice and sloping offshore structures, crack initiations and propagations as well as the interactions between the resultant ice fragments occur. To simulate such complicated processes, the cohesive element method, which is capable of simulating dynamic fragmentation, becomes a potential numerical approach and has been applied to various kinds of offshore structures. One of the major challenges in applications of the cohesive element method is the mesh dependency or convergence issue for which remedies of random meshes and a random property field have been proposed in the context of concrete, ceramic, or glass fiber fracture problems. In this paper, random meshes based on Voronoi tessellations and a random ice property field following Weibull distributions were implemented into the numerical setup of the cohesive element method for level ice-sloping structure interactions to evaluate their performance in improving mesh convergence. Additionally, a new formulation based on added mass and hydrodynamic damping to capture the hydrodynamic effect of the fluid base was derived and utilized in the simulations. Based on a series of simulations, the time histories of the dynamic ice forces in the loading direction were compared with field data. It was found that an average Voronoi cell size close to the breaking length of the ice sheet yielded the best accuracy, since roughly all the cohesive interfaces near the structure failed in the simulations. This gives guidance in the determination of the average Voronoi cell size in the numerical setup according to empirical relationships between the breaking length and the ice thickness. Additionally, with the validated numerical model, the magnitude of the ice force in the transverse direction was found to be 30% of that in the loading direction, which serves as a preliminary method to determine the dynamic ice force in the transverse direction, facilitating the conceptual design of jacket structures with ice breaking cones.
机译:在水平冰和倾斜的海上结构之间的相互作用期间,发生裂纹发起和传播以及所得冰片段之间的相互作用。为了模拟这种复杂的过程,能够模拟动态碎片的粘性元件方法成为潜在的数值方法,并且已经应用​​于各种近海结构。粘结元件方法应用中的主要挑战之一是在混凝土,陶瓷或玻璃纤维骨折问题的背景下提出了随机网格和随机物质场的综合依赖性或收敛性问题。在本文中,基于voronoi曲面细分的随机网格和威布洛分布后的随机冰属性场进行了凝聚元素方法的数值设置,用于降低冰倾斜结构相互作用,以评估改进网格融合的性能。另外,基于添加质量和流体动力学阻尼以捕获流体基底的流体动力学效果的新配方是在模拟中的。基于一系列仿真,将负载方向上的动态冰力的时间历史与现场数据进行比较。结果发现,靠近冰盖的断裂长度的平均voronoi细胞大小产生了最佳精度,因为大致在结构附近的所有粘性接口都在模拟中失败。这在根据断裂长度和冰厚之间的经验关系中确定数值设置中的平均VoronoI细胞大小的指导。另外,利用验证的数值模型,发现横向中的冰力的大小是在装载方向上的30%,其用作确定横向方向上的动态冰力的初步方法,便于夹克结构的概念性设计与冰锥体的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号