...
首页> 外文期刊>International journal of numerical methods for heat & fluid flow >Modeling heat transfer of nanofluid flow in microchannels with electrokinetic and slippery effects using Buongiorno's model
【24h】

Modeling heat transfer of nanofluid flow in microchannels with electrokinetic and slippery effects using Buongiorno's model

机译:使用Buongiorno模型模拟具有电动和滑移效应的微通道中纳米流体流动的传热

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose This paper aims to study the heat transfer of nanofluid flow driven by the move of channel walls in a microchannel under the effects of the electrical double layer and slippery properties of channel walls. The distributions of velocity, temperature and nanoparticle volumetric concentration are analyzed under different slip-length. Also, the variation rates of flow velocity, temperature, concentration of nanoparticle, the pressure constant, the local volumetric entropy generation rate and the total cross-sectional entropy generation are analyzed. Design/methodology/approach A recently developed model is chosen which is robust and reasonable from the point of view of physics, as it does not impose nonphysical boundary conditions, for instance, the zero electrical potential in the middle plane of the channel or the artificial pressure constant. The governing equations of flow motion, energy, electrical double layer and stream potential are derived with slip boundary condition presented. The model is non-dimensionalized and solved by using the homotopy analysis method. Findings Slip-length has significant influences on the velocity, temperature and nanoparticle volumetric concentration of the nanofluid. It also has strong effects on the pressure constant. With the increase of the slip-length, the pressure constant of the nanofluid in the horizontal microchannel decreases. Both the local volumetric entropy generation rate and total cross-sectional entropy generation rate are significantly affected by both the slip-length of the lower wall and the thermal diffusion. The local volumetric entropy generation rate at the upper wall is always higher than that around the lower wall. Also, the larger the slip-length is, the lower the total cross-sectional entropy generation rate is when the thermal diffusion is moderate. Originality/value The findings in this work on the heat transfer and flow phenomena of the nanofluid in microchannel are expected to make a contribution to guide the design of micro-electro-mechanical systems.
机译:目的本文旨在研究在电双层和通道壁的湿滑特性影响下,微通道中通道壁的移动所驱动的纳米流体流的热传递。分析了不同滑移长度下的速度,温度和纳米颗粒体积浓度的分布。此外,分析了流速,温度,纳米颗粒浓度,压力常数,局部体积熵产生速率和总截面熵产生的变化率。设计/方法/方法选择了最近开发的模型,该模型从物理学的角度来看是健壮且合理的,因为它没有施加非物理的边界条件,例如,通道中间平面的零电势或人工的压力常数。推导了滑移边界条件,推导了流体运动,能量,双电层和水势的控制方程。该模型是无量纲的,并使用同伦分析方法进行求解。结果滑移长度对纳米流体的速度,温度和纳米颗粒体积浓度有重大影响。它还对压力常数有很强的影响。随着滑移长度的增加,水平微通道中纳米流体的压力常数减小。下壁的滑移长度和热扩散都显着影响局部体积熵的产生率和总截面熵的产生率。上壁的局部体积熵产生率始终高于下壁的局部体积熵产生率。另外,滑移长度越大,当热扩散适度时,总截面熵产生率越低。独创性/价值这项工作中有关纳米通道中纳米流体的传热和流动现象的发现有望为指导微机电系统的设计做出贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号