...
首页> 外文期刊>International journal of numerical methods for heat & fluid flow >Analytical and numerical approaches for Falkner-Skan flow of MHD Maxwell fluid using a non-Fourier heat flux model
【24h】

Analytical and numerical approaches for Falkner-Skan flow of MHD Maxwell fluid using a non-Fourier heat flux model

机译:非傅里叶热通量模型对MHD Maxwell流体Falkner-Skan流动的分析和数值方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose - This paper aims to describe the laminar flow of Maxwell fluid past a non-isothermal rigid plate with a stream wise pressure gradient. Heat transfer mechanism is analyzed in the context of non-Fourier heat conduction featuring thermal relaxation effects. Design/methodology/approach - Flow field is permeated to uniform transverse magnetic field. The governing transport equations are changed to globally similar ordinary differential equations, which are tackled analytically by homotopy analysis technique. Homotopy analysis method-Padè approach is used to accelerate the convergence of homotopy solutions. Also, numerical approximations are made by means of shooting method coupled with fifth-order Runge-Kutta method Findings - The solutions predict that fluid relaxation time has a tendency to suppress the hydrodynamic boundary layer. Also, heat penetration depth reduces for increasing values of thermal relaxation time. The general trend of wall temperature gradient appears to be similar in Fourier and Cattaneo-Christov models. Research limitations/implications - An important implication of current research is that the thermal relaxation time considerably alters the temperature and surface heat flux. Originality/value - Current problem even in case of Newtonian fluid has not been attempted previously.
机译:目的-本文旨在描述通过非等温刚性板的麦克斯韦流体的层流,其流动方向具有压力梯度。在具有热弛豫效应的非傅立叶热传导的背景下分析了传热机理。设计/方法/方法-流场渗透到均匀的横向磁场。控制输运方程变为全局相似的常微分方程,通过同伦分析技术对其进行解析。同伦分析方法-Padè方法用于加速同伦解的收敛。同样,通过射击方法结合五阶Runge-Kutta方法进行数值近似。结果-该解决方案预测流体松弛时间具有抑制流体动力边界层的趋势。而且,为了增加热弛豫时间的值,热渗透深度减小。在Fourier和Cattaneo-Christov模型中,壁温梯度的总体趋势似乎相似。研究局限性/含义-当前研究的一个重要含义是,热弛豫时间会极大地改变温度和表面热通量。创意/价值-即使以前没有尝试过牛顿流体,也存在当前问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号