首页> 外文期刊>International Journal for Numerical and Analytical Methods in Geomechanics >Modelling strain localization in granular materials using micropolar theory: Mathematical formulations
【24h】

Modelling strain localization in granular materials using micropolar theory: Mathematical formulations

机译:使用微极理论对颗粒材料中的应变局部化进行建模:数学公式

获取原文
获取原文并翻译 | 示例
           

摘要

It has been known that classical continuum mechanics laws fail to describe strain localization in granular materials due to the mathematical ill-posedness and mesh dependency. Therefore, a non-local theory with internal length scales is needed to overcome such problems. The micropolar and high-order gradient theories can be considered as good examples to characterize the strain localization in granular materials. The fact that internal length scales are needed requires micromechanical models or laws; however, the classical constitutive models can be enhanced through the stress invariants to incorporate the Micropolar effects. In this paper. Lade's single hardening model is enhanced to account for the couple stress and Cosserat rotation and the internal length scales are incorporated accordingly. The enhanced Lade's model and its material properties are discussed in detail; then the finite element formulations in the Updated Lagrangian Frame (UL) are used. The finite element formulations were implemented into a user element subroutine for ABAQUS (UEL) and the solution method is discussed in the companion paper. The model was found to predict the strain localization in granular materials with low dependency on the finite element mesh size. The shear band was found to reflect on a certain angle when it hit a rigid boundary. Applications for the model on plane strain specimens tested in the laboratory are discussed in the companion paper.
机译:众所周知,由于数学不适定性和网格依赖性,经典的连续力学定律无法描述颗粒材料中的应变局部化。因此,需要一种具有内部长度尺度的非局部理论来克服这些问题。微极性和高阶梯度理论可以被认为是表征颗粒材料中应变局部化的好例子。需要内部长度标尺这一事实需要微机械模型或定律;然而,经典的本构模型可以通过应力不变量合并微极性效应来增强。在本文中。 Lade的单硬化模型得到了增强,以解决偶应力和Cosserat旋转问题,并相应地合并了内部长度尺度。详细讨论了增强的Lade模型及其材料特性。然后使用更新的拉格朗日框架(UL)中的有限元公式。有限元公式已实现到ABAQUS(UEL)的用户元素子例程中,并且解决方法将在随附的文件中进行讨论。发现该模型可预测颗粒材料中的应变局部性,而对有限元网格尺寸的依赖性较低。发现剪切带碰到刚性边界时会以一定角度反射。随附论文中讨论了该模型在实验室测试的平面应变样本上的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号