...
首页> 外文期刊>International Journal of Modern Physics C (IJMPC) >PARALLEL 3D FINITE-DIFFERENCE TIME-DOMAIN METHOD ON MULTI-GPU SYSTEMS
【24h】

PARALLEL 3D FINITE-DIFFERENCE TIME-DOMAIN METHOD ON MULTI-GPU SYSTEMS

机译:多GPU系统上的并行3D时差有限域方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Finite-di®erence time-domain (FDTD) is a popular but computational intensive method tonsolve Maxwell's equations for electrical and optical devices simulation. This paper presentsnimplementations of three-dimensional FDTD with convolutional perfect match layer (CPML)nabsorbing boundary conditions on graphics processing unit (GPU). Electromagnetic ¯elds innYee cells are calculated in parallel millions of threads arranged as a grid of blocks with computenuni¯ed device architecture (CUDA) programming model and considerable speedup factors arenobtained versus sequential CPU code. We extend the parallel algorithm to multiple GPUs innorder to solve electrically large structures. Asynchronous memory copy scheme is used in datanexchange procedure to improve the computation e±ciency. We successfully use this techniquento simulate pointwise source radiation and validate the result by comparison to high precisionncomputation, which shows favorable agreements. With four commodity GTX295 graphics cardsnon a single personal computer, more than 4000 million Yee cells can be updated in one second,nwhich is hundreds of times faster than traditional CPU computation.
机译:有限差分时域(FDTD)是一种流行的但计算量大的方法,用于求解电气和光学设备仿真的麦克斯韦方程组。本文介绍了在卷积完全匹配层(CPML)中吸收图形处理单元(GPU)边界条件的三维FDTD的实现。电磁场单元是使用计算设备架构(CUDA)编程模型在数百万个并行处理的线程中以块网格的形式进行计算的,与连续的CPU代码相比,无法获得可观的加速因子。我们将并行算法扩展到多个GPU,以解决大型电气结构。 datanexchange过程中使用了异步存储器复制方案,以提高计算效率。我们成功地使用了该技术来模拟点状源辐射,并通过与高精度计算进行比较来验证结果,这表明了良好的一致性。一台个人计算机就可以使用四个商用GTX295图形卡来更新40亿个Yee单元,这是传统CPU计算速度的数百倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号