首页> 外文期刊>International journal of mechanics and materials in design >Materials design for the anisotropic linear elastic properties of textured cubic crystal aggregates using zeroth-, first- and second-order bounds
【24h】

Materials design for the anisotropic linear elastic properties of textured cubic crystal aggregates using zeroth-, first- and second-order bounds

机译:使用零阶,一阶和二阶边界的织构立方晶体聚集体各向异性线性弹性特性的材料设计

获取原文
获取原文并翻译 | 示例
           

摘要

For polycrystals made of cubic materials like copper, aluminum, iron and other metals and ceramics, the macroscopic elastic behavior can be bounded using minimum energy principles. Bohlke and Lobos (Acta Mater. 67:324-334, 2014) have shown that not only the Voigt and the Reuss bound but also the Hashin-Shtrikman bounds can be represented explicitly depending on the texture in form of the fourth-order texture coefficient. Considering the inequalities due to these bounds, the texture can be enclosed independently of the specific cubic material parameters. This implies domains for the texture parameters. Materials design is defined as the identification of materials and microstructures such that the effective constitutive properties correspond best to a prescribed properties profile. The design space is proposed to be constituted by the material design space and microstructure design space, delivering a total of twelve scalar design variables in the present model for linear elasticity of cubic crystal aggregates. Based on analytical results, materials design is established as an algorithm following Adams et al. (Microstructure Sensitive Design for Performance Optimization, 2013). In the present work, the scheme consists of four steps: (i) material selection, (ii) homogenization scheme, (iii) properties closure, and (iv) microstructure optimization. As an example, Young's modulus of a polycrystal is designed with respect to four prescribed directions for a macroscopical orthotropic sample symmetry. For the orthotropic texture domain, a mathematically equivalent parametrization is derived in order to facilitate the constrained numerical optimizations.
机译:对于由立方材料(例如铜,铝,铁以及其他金属和陶瓷)制成的多晶体,可以使用最小能量原理来限制宏观弹性行为。 Bohlke和Lobos(Acta Mater。67:324-334,2014)表明,不仅可以根据四阶纹理系数的形式显式表示Voigt和Reuss界,而且可以明确表示Hashin-Shtrikman界。考虑到由于这些边界引起的不等式,可以独立于特定的立方材料参数来封闭纹理。这意味着纹理参数的域。材料设计被定义为对材料和微结构的识别,以使有效的本构特性最好地对应于规定的特性曲线。提议设计空间由材料设计空间和微观结构设计空间组成,在本模型中,总共提供了十二个标量设计变量,以用于立方晶体聚集体的线性弹性。根据分析结果,材料设计被建立为遵循Adams等人的算法。 (用于性能优化的微结构敏感设计,2013年)。在本工作中,该方案包括四个步骤:(i)材料选择,(ii)均质方案,(iii)性能封闭和(iv)微观结构优化。例如,针对宏观正交各向异性样品对称性,相对于四个规定方向设计多晶的杨氏模量。对于正交各向异性纹理域,推导了数学上等效的参数化,以便于进行受约束的数值优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号