...
首页> 外文期刊>International journal of hydrogen energy >Synergy of elemental Fe and Ti promoting low temperature hydrogen sorption cycling of magnesium
【24h】

Synergy of elemental Fe and Ti promoting low temperature hydrogen sorption cycling of magnesium

机译:Fe和Ti元素的协同​​作用促进镁的低温氢吸附循环

获取原文
获取原文并翻译 | 示例

摘要

We studied the catalytic effects of Titanium, Iron and FeTi intermetallic on the desorption kinetics of magnesium hydride. In order to separate the catalytic effects of each element from additional synergistic and alloying effects, Mg-Ti and Mg-Fe mixtures were studied as a baseline for Mg-Fe-Ti elemental and Mg-(FeTi) intermetallic composites. Sub-micron dimensions for MgH_2 particles and excellent nanoscale catalyst dispersion was achieved by high-energy ball-milling as confirmed by analytical electron microscopy techniques. The composites containing Fe shows desorption temperature of 170 K lower than as-received MgH_2 powder, which makes it suitable to be cycled at relatively low temperature of 523 K. Furthermore, the low cycling temperature prevents the formation of Mg_2FeH_6. In sorption cycling tests, Mg-10% Ti and Mg-10% (FeTi), after about 5 activation cycles, show fast desorption kinetics initially, but the kinetics also degrade faster than for all other composites, eventually slowing down by a factor of 7 and 4, respectively. The ternary Mg-Fe-Ti composite shows best performance. With the highest BET surface area of 40 m~2/g, it also shows much less degradation during cycling. This is attributed to titanium hydride acting as a size control agent preventing agglomeration of particles; while Fe works as a very strong catalyst with uniform and nanoscale dispersion on the surface of MgH_2 particles.
机译:我们研究了钛,铁和铁钛金属间化合物对氢化镁解吸动力学的催化作用。为了将每种元素的催化作用与其他协同作用和合金作用分开,对Mg-Ti和Mg-Fe混合物进行了研究,以此作为Mg-Fe-Ti元素和Mg-(FeTi)金属间复合材料的基线。通过分析电子显微镜技术证实,通过高能球磨可以实现MgH_2颗粒的亚微米尺寸和出色的纳米级催化剂分散性。含铁的复合材料的脱附温度比预期的MgH_2粉末低170 K,这使其适合在523 K的较低温度下进行循环。此外,较低的循环温度可防止Mg_2FeH_6的形成。在吸附循环测试中,经过约5个活化循环,Mg-10%Ti和Mg-10%(FeTi)最初显示出快速的解吸动力学,但该动力学的降解速度也比所有其他复合材料快,最终减慢了约两倍。分别为7和4。 Mg-Fe-Ti三元复合材料表现出最佳性能。 BET表面积最高为40 m〜2 / g,在循环过程中其降解也要少得多。这归因于氢化钛用作防止颗粒团聚的尺寸控制剂;铁是一种非常强的催化剂,在MgH_2颗粒表面具有均匀且纳米级的分散性。

著录项

  • 来源
    《International journal of hydrogen energy 》 |2011年第11期| p.6711-6722| 共12页
  • 作者单位

    Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada,National Institute for Nanotechnoloqy, NRC, Edmonton, Alberta, Canada;

    Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada,National Institute for Nanotechnoloqy, NRC, Edmonton, Alberta, Canada;

    Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada,National Institute for Nanotechnoloqy, NRC, Edmonton, Alberta, Canada;

    Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada,National Institute for Nanotechnoloqy, NRC, Edmonton, Alberta, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Magnesium hydride; Catalyst dispersion; Z-contrast STEM; Cycling stability; JMA model; Kissinger analysis;

    机译:氢化镁催化剂分散体;Z对比STEM;循环稳定性;JMA模型;基辛格分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号