首页> 外文期刊>International journal of hydrogen energy >Poroelastic PEM fuel cell catalyst layer and its implication in predicting the effect of mechanical load on flow and transport properties
【24h】

Poroelastic PEM fuel cell catalyst layer and its implication in predicting the effect of mechanical load on flow and transport properties

机译:多孔弹性PEM燃料电池催化剂层及其在预测机械载荷对流动和传输性能影响中的意义

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This study experimentally and numerically investigates the polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) to analyze the coupled pore-fluid diffusion and resultant stress distribution. In the study, effect of nanoporosity on mechanical strength is explored by analyzing the CL structure based on the elastic modulus and the yield strength scaling laws of open-cell foams. A finite element analysis of the CL is performed by adopting the biphasic consolidation theory. The biphasic theory in combination with the transient consolidation principle of a porous body is formulated to account for the variation in the external loading conditions as well as the internal pore pressure. The CLs are observed to have the elastoplastic ionomer matrix and anisotropic nanoporosity, which are responsible for the localized plastic densiu0001cation on indentation. The indentation behavior of the CLs appears to respond similar to the conventional low-density nanoporous foams leading to the localized nonlinear response of contact stiffness. The mechanical properties were found to be insensitive to the constituents' (Pt and Carbon) concentration gradation over the CL thickness. In the numerical results, effect of porosity loss on the transport properties is discussed to highlight the importance of estimating the stress levels. It is outlined from the present study that under critical loading conditions, the yield limits of the CL play a crucial role in estimating the extent of transport losses. The effective proton conductivity and oxygen diffusivity losses are dependent on the macroscopic strength of the ionomer and the effective electronic conductivity loss is a function of intrinsic strength of the CL, which is also responsible for the overall durability of the CL.
机译:这项研究通过实验和数值方法研究了聚合物电解质燃料电池(PEFC)催化剂层(CLs),以分析耦合的流体扩散和应力分布。在这项研究中,通过基于开孔泡沫的弹性模量和屈服强度的比例定律分析CL结构,探索了纳米孔隙对机械强度的影响。通过采用双相固结理论进行有限元分析。结合多孔体的瞬态固结原理,提出了双相理论,以说明外部载荷条件以及内部孔隙压力的变化。观察到CL具有弹塑性离聚物基体和各向异性的纳米多孔性,其负责压痕上的局部塑性致密化。 CL的压痕行为似乎类似于常规的低密度纳米多孔泡沫,从而导致接触刚度的局部非线性响应。发现机械性能对CL厚度范围内的成分(铂和碳)浓度等级不敏感。在数值结果中,讨论了孔隙度损失对输运性质的影响,以强调估计应力水平的重要性。从本研究中可以得出结论,在临​​界装载条件下,CL的屈服极限在估计运输损失程度方面起着至关重要的作用。有效的质子传导性和氧扩散性损失取决于离聚物的宏观强度,有效的电子传导性损失是CL的本征强度的函数,这也决定了CL的整体耐久性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号