首页> 外文期刊>International journal of hydrogen energy >Predictive power management strategies for stand-alone hydrogen systems: Lab-scale validation
【24h】

Predictive power management strategies for stand-alone hydrogen systems: Lab-scale validation

机译:独立氢气系统的预测电源管理策略:实验室规模的验证

获取原文
获取原文并翻译 | 示例
           

摘要

Power Management Strategies (PMSs) to control stand-alone energy systems affect the reliability of meeting load demand as well as the cyclic operation of various subsystems. The hybridisation of sources through the integration of hydrogen fuel cells with energy storage means optimising the PMS should be "intelligently" done unless relying on rule-based PMSs which are simplistic to use but subject to lack of optimisation. This paper presents the methodology and validation of a lab-scale (desktop) energy system controlled by a predictive PMS. Validation of the intelligently based PMS can be done in the lab-scale before (costly) full deployment in the field, but experiments to support this have not been reported in relation to hydrogen systems. The experimentally tested hybrid energy system consists of an emulated renewable power source which can represent solar-PV and/or wind generators, battery bank and PEM fuel cell integrated with metal hydride storage. Experimental testing as well as the use of real-time predictions using Neural Networks is utilised. The effects of several control parameters which are either hardware dependant or affect the predictive algorithm are investigated with system performance, under the predictive PMS, benchmarked against a rule-based PMS. The results reveal that a predictive PMS is impacted by the prediction horizon used to forecast the availability of renewables or load, the decision time interval used for updating the PMS as well as time lags resulting from hardware sensors used to convey system status to the decision algorithm responsible for updating the PMS. The maximum thresholds of the above mentioned control parameters are 120, 15 and 3 s, respectively. Beyond these limits, the ability of the predictive PMS to effectively control the system degrades significantly. This study demonstrates the feasibility of using real-time predictions of renewable resources and load demand to optimise a PMS in a stand-alone energy system and experimentally validates this, which has not been previously reported. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
机译:用于控制独立能源系统的电源管理策略(PMS)影响满足负载需求的可靠性以及各个子系统的循环运行。除非依靠基于规则的PMS(使用起来比较简单,但缺乏优化),否则应通过“智能”方式完成氢燃料电池与储能装置的集成,实现能源的混合。本文介绍了由预测PMS控制的实验室规模(台式)能源系统的方法论和验证。基于智能的PMS的验证可以在实验室规模(成本高昂)全面部署之前进行,但是尚未有关于氢系统的实验来证明。经过实验测试的混合能源系统由模拟可再生电源组成,可以代表太阳能光伏和/或风力发电机,电池组以及与金属氢化物存储集成的PEM燃料电池。利用了实验测试以及使用神经网络的实时预测。在基于预测PMS的系统性能下,以基于规则的PMS为基准,研究了一些依赖于硬件或影响预测算法的控制参数的效果。结果表明,预测性PMS受以下因素影响:用于预测可再生能源或负荷可用性的预测范围,用于更新PMS的决策时间间隔以及用于将系统状态传达给决策算法的硬件传感器导致的时滞负责更新PMS。上述控制参数的最大阈值分别为120、15和3 s。超出这些限制,预测PMS有效控制系统的能力将大大降低。这项研究证明了使用可再生资源和负荷需求的实时预测来优化独立能源系统中的PMS的可行性,并通过实验验证了这一点(之前尚未进行过报道)。 Hydrogen Energy Publications,LLC版权所有(C)2015。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号