...
首页> 外文期刊>International journal of hydrogen energy >Multiscale relationship of electronic and ionic conduction efficiency in a PEMFC catalyst layer
【24h】

Multiscale relationship of electronic and ionic conduction efficiency in a PEMFC catalyst layer

机译:PEMFC催化剂层中电子和离子传导效率的多尺度关系

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The three-dimensional structure and composition of a PEMFC catalyst layer (CL) define this component as a random heterogeneous material. During the manufacturing process of CLs, agglomerates form composed of primary components plus a number of pores of a variety of sizes. These structural features of the CL allow us to define internal substructures at different scale levels, and with that, we can establish a scaling strategy for numerical simulation. This work presents an analytical scaling method to determine electronic and ionic conduction efficiency in a whole PEMFC catalyst layer defined by internal substructures at three scale levels. The effective conductive area and effective conductive length of a subdomain are used to estimate a conduction efficiency of an element formed by subdomains of smaller scales. The effect of porosity and ionomer load over conduction efficiency can be quantified. The case study presented in this work shows that the ionic conduction efficiency increases, while the electronic conduction efficiency diminishes, both in an exponential fashion, when ionomer load increases. Furthermore, both electronic and ionic conduction efficiency decreases linearly with the porosity. Finally, the scaling method not only reduces computer-processing time but also allows a detailed study of the CL at the nanoscale level. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:PEMFC催化剂层(CL)的三维结构和组成将该组分定义为无规异质材料。在CL的制造过程中,附聚物形成为由主要成分以及许多各种尺寸的孔组成的。 CL的这些结构特征使我们可以定义不同比例级别的内部子结构,从而可以建立数值模拟的缩放策略。这项工作提出了一种分析缩放方法,用于确定由三个子级别的内部子结构定义的整个PEMFC催化剂层中的电子和离子传导效率。子畴的有效导电面积和有效导电长度用于估计由较小比例的子畴形成的元件的导电效率。孔隙度和离聚物负载对传导效率的影响可以量化。在这项工作中提出的案例研究表明,当离聚物负载增加时,离子传导效率会提高,而电子传导效率会以指数方式降低。此外,电子和离子传导效率均随孔隙率线性降低。最后,缩放方法不仅减少了计算机处理时间,而且可以在纳米级对CL进行详细研究。 (C)2016氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2016年第42期|19399-19407|共9页
  • 作者单位

    Univ Quintana Roo, Blvd Bahia S-N, Chetmal 77019, Q Roo, Mexico;

    Ctr Invest Cient Yucatan, CONACYT, Carretera Sierra Papacal Chuburna Puerto,Km 5, Sierra Papacal 97302, Merida, Mexico;

    Inst Invest Elect, Ave Reforma 113, Cuernavaca 62490, Morelos, Mexico;

    Univ Quintana Roo, Blvd Bahia S-N, Chetmal 77019, Q Roo, Mexico;

    Univ Quintana Roo, Blvd Bahia S-N, Chetmal 77019, Q Roo, Mexico;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Numerical simulation; Scaling method; PEMFC catalyst layer;

    机译:数值模拟;定标方法;PEMFC催化剂层;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号