首页> 外文期刊>International journal of hydrogen energy >Nickel membranes for in-situ hydrogen separation in high-temperature fluidized bed gasification processes
【24h】

Nickel membranes for in-situ hydrogen separation in high-temperature fluidized bed gasification processes

机译:用于高温流化床气化过程中原位氢分离的镍膜

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The Heatpipe Reformer provides an allothermal gasification process for the generation of hydrogen-rich synthesis gas. This synthesis gas can be used for generation of hydrogen for applications like fuel cells, engines, storage or the chemical industries. Conventional processes for hydrogen production involve CO Shift reactors to enhance hydrogen yield followed by hydrogen separation using gas scrubbing technology. The Institute of Energy Process Engineering (FAU-EVT) follows the approach to apply hydrogen permeable membranes as separation step directly in the reformer. This also allows higher hydrogen yields due to an additional shift of the gasification reactions to the product side as one product is continuously removed. This paper gives an overview on membranes in high temperature applications. It focuses on the temperature range from 750 to 900 degrees C required for biomass gasification processes. Existing approaches to high temperature hydrogen separation like palladium composite membranes or ceramic materials show advantages and disadvantages mainly regarding stability and prices. The presented approach applies commercial nickel capillary tubes as membranes. Vacuum increases the partial pressure difference between permeate and retentate. This remedies the need for a sweep gas, which is needed with all membranes that cannot withstand a physical pressure difference. In the experimental section several commercial nickel capillaries were tested for their hydrogen permeability and the results from a parameter study regarding the influence of synthesis gas components like CO, CH4 and H2O on permeation are shown. The nickel membranes were also tested in hydrogen containing H2S, which can be present in synthesis gas in concentrations of up to 1000 ppm. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:热管重整器提供了变热气化过程,用于生成富氢合成气。该合成气可用于产生氢,用于燃料电池,发动机,存储或化学工业。常规的制氢工艺包括CO变换反应器以提高氢气产量,然后使用气体洗涤技术进行氢气分离。能源过程工程研究所(FAU-EVT)遵循将氢可渗透膜作为分离步骤直接应用到重整器中的方法。由于连续移除一种产物时,由于气化反应向产物侧的另外转移,这还允许更高的氢产率。本文概述了高温应用中的膜。它着重于生物质气化过程所需的750至900摄氏度的温度范围。现有的高温氢分离方法,例如钯复合膜或陶瓷材料,显示出主要在稳定性和价格方面的优点和缺点。提出的方法将商业镍毛细管用作膜。真空会增加渗透物和截留物之间的分压差。这消除了对吹扫气的需要,所有不能承受物理压力差的膜都需要吹扫气。在实验部分中,测试了几种商用镍毛细管的氢渗透性,并显示了有关合成气成分(如CO,CH4和H2O)对渗透的影响的参数研究结果。镍膜也在含氢的硫化氢中进行了测试,合成气中的硫化氢浓度最高可达1000 ppm。 (C)2016氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号