首页> 外文期刊>International journal of hydrogen energy >Robust and optimal technical method with application to hydrogen fuel cell systems
【24h】

Robust and optimal technical method with application to hydrogen fuel cell systems

机译:鲁棒性和最佳技术方法在氢燃料电池系统中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, a robust nonsingular fast converging sliding mode control (RNFCSMC) with particle swarm optimization (PSO)-based radial basis function (RBF) neural network is presented and applied in hydrogen fuel cell systems capable to maintain low harmonic distortion even in case of nonlinear load. The proposed technical method is a modified structure: a RNFCSMC plus a PSO-based RBF neural network. Though the classic sliding mode control has inherent robustness against plant parameter variations and load disturbances, the convergence of the system states to the zero is usually asymptotical in infinite time. The RNFCSMC is introduced to assure the finite time convergence of the system states and there is no singularity problem. But, once a severe load disturbance is applied, the chattering or steady-state error still exists in RNFCSMC. The PSO-based RBF neural network is employed to determine the control gains of the RNFCSMC, thus eliminating the chattering or steady-state error so that the system performance reaches the optimal point. The proposed technical method has been realized (1 kW, 110V(rms)/60 Hz) for the actual single-phase hydrogen fuel cell inverters controlled by a TI DSP. Simulation and experimental results reveal that even under nonlinear load circumstances the proposed technical method yields voltage total harmonic distortion (THD) less than 1.4%, which excels the IEEE standard 519, thus demonstrating the effectiveness of the proposed technical method. Because the proposed hydrogen fuel cell system is considerably simpler to implement than classic sliding mode system and offers faster computational speed, this paper will be a beneficial reference to related control designers of hydrogen fuel cell systems. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:本文提出了一种基于粒子群优化(PSO)的径向基函数(RBF)神经网络的鲁棒非奇异快速收敛滑模控制(RNFCSMC),并将其应用于即使在以下情况下也能保持低谐波失真的氢燃料电池系统非线性负载。提出的技术方法是一种修改后的结构:RNFCSMC加上基于PSO的RBF神经网络。尽管经典的滑模控制具有抵御设备参数变化和负载干扰的固有鲁棒性,但系统状态趋于零的收敛通常在无限时间内是渐近的。引入RNFCSMC是为了确保系统状态的有限时间收敛,并且不存在奇异性问题。但是,一旦施加了严重的负载干扰,RNFCSMC中仍然会出现抖动或稳态误差。基于PSO的RBF神经网络用于确定RNFCSMC的控制增益,从而消除了颤动或稳态误差,从而使系统性能达到最佳点。对于由TI DSP控制的实际单相氢燃料电池逆变器,已实现了建议的技术方法(1 kW,110V(rms)/ 60 Hz)。仿真和实验结果表明,即使在非线性负载情况下,该技术方法也能产生小于1.4%的电压总谐波失真(THD),优于IEEE标准519,从而证明了该技术方法的有效性。由于所提出的氢燃料电池系统比经典的滑模系统易于实施,并且具有更快的计算速度,因此本文将为氢燃料电池系统的相关控制设计人员提供有益的参考。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号