...
首页> 外文期刊>International journal of hydrogen energy >Application of intensive hydrodynamic cavitation in liquids for synthesis of hydrogen and nanoparticles
【24h】

Application of intensive hydrodynamic cavitation in liquids for synthesis of hydrogen and nanoparticles

机译:密集流体动力空化在液体合成液体中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the results of experimental studies of hydrogen and nanoparticles production using intensive hydrodynamic cavitation in liquids are presented. Physicochemical processes occurring in a cavitation bubble at the last stage of its compression are very similar to processes occurring in the explosion chamber. The values of pressure and temperature achieved in this case ensure the thermodynamic stability of the reaction products and the production of a gaseous hydrogen and nanoclusters as a result of decomposition of molecules of liquid, which is confirmed by theoretical calculations. The controlled addition of hydrogen-containing liquids and the change in the compression conditions of cavitation bubbles make it possible to control the process of hydrogen synthesis, which is an important step in the development of modern high-tech alternative energy methods. The pulsation of a spherical cavity is described by the Kirkwood Bethe equations, which are one of the most accurate mathematical models of pulsation processes at an arbitrary velocity of the cavity boundary. The model allows to describe the process of pulsations of cavitation cavities, conduct comprehensive parametric studies and evaluate the effect of various process parameters on the collapse of cavities. This work continues with the experiments on cavitation synthesis of carbon nano structures. With the rapid movement of chemically pure hydrocarbons along the profiled channel in the form of a Venturi nozzle, cavitation bubbles form in the liquid, which are then compressed in the working chamber, in which a sharp pressure surge is created. The pressure in the shock wave, which reaches 80-90 MPa, ensures the collapse of cavitation bubbles close to adiabatic compression. As a result of the number of rapidly occurring physicochemical processes of evaporation, heating, and thermal dissociation of hydrocarbon vapors, a solid carbon phase including graphene oxide nanoparticles and a gaseous hydrogen-containing phase are synthesized in the cavitation, which is then subjected to separation. Synthesized graphene oxide nanoparticles possess activated surface due to the cavitation action and can be subsequently used as substrates for modification with functional nanoparticles, e.g. silver nano particles with antibacterial properties. The article is of great help to scientists and design engineers who are engaged in the development of promising hydrogen generating facilities and hydrogen complexes. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:本文介绍了使用液体强化流体动力空化的氢气和纳米颗粒的实验研究的结果。在其压缩的最后阶段的空化泡中发生的物理化学过程与爆炸室中发生的过程非常相似。在这种情况下实现的压力和温度的值可确保反应产物的热力学稳定性以及由于液体分子的分解而产生的气态氢和纳米蛋白的产生,这通过理论计算证实。对含氢液体的控制加入和空化气泡的压缩条件的变化使得可以控制氢合成的过程,这是现代高科技替代能源方法开发的重要步骤。球形腔的脉动由Kirkwood Bethe方程描述,这是腔边界的任意速度下的脉动处理的最精确的数学模型之一。该模型允许描述空化腔脉动的过程,进行综合的参数研究,并评估各种工艺参数对腔塌陷的影响。这项工作继续存在对碳纳米结构的空化合成的实验。随着沿着文丘里喷嘴的形式的沿着型型通道的快速运动,在液体中形成空化气泡,然后在工作室中被压缩,其中产生剧烈的压力浪涌。达到80-90MPa的冲击波中的压力确保了靠近绝热压缩的空化泡沫塌陷。由于蒸发,加热和烃蒸汽热解离的快速发生的物理化学方法的次数,在空化中合成了包括石墨烯氧化物纳米颗粒和含气态氢相的固体碳阶段,然后进行分离。合成的石墨烯氧化物纳米颗粒具有由于空化作用引起的活性表面,随后可以用作用功能纳米颗粒改性的基材,例如,具有抗菌性质的银纳米颗粒。这篇文章对科学家和设计工程师有很大的帮助,他们从事有前途的氢气产生设施和氢气复合物的开发。 (c)2021氢能出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号