首页> 外文期刊>International journal of hydrogen energy >Hydrogen storage adsorbent systems acceptability envelope
【24h】

Hydrogen storage adsorbent systems acceptability envelope

机译:储氢吸附剂系统的可接受范围

获取原文
获取原文并翻译 | 示例
       

摘要

A methodology was developed to determine the range of coupled material parameters and operating conditions that allow an adsorbent based hydrogen storage system to meet performance targets. The range of acceptable parameters forms a multi-dimensional volume, or envelope. For this reason, the methodology is referred to as the Adsorbent Acceptability Envelope. The model evaluates the performance of the overall storage tank, comprised of the adsorbent material, the heat transfer system and the pressure vessel. Two cases were analyzed, both based on the flow-through cooling approach providing the cooling power required to charge hydrogen, with results presented and discussed. The first application (the forward problem) analyzed the gravimetric and volumetric performance of MOF-5 (R) based hydrogen storage beds, under various operating conditions. Results demonstrated that the system can reach a gravimetric capacity of approximately 4 wt% and volumetric capacity of about 20 g/L within 200 s during the absorption process. The second application (the inverse problem) identified the range of selected material parameters, required to meet the U.S. Department of Energy targets for gravimetric and volumetric capacity. Results showed that the most important parameters are the maximum capacity and the density of the material. Adsorbents having a density on the order of twice that of nominal powder form MOF-5 (R) can meet the 2020 DOE targets (i.e. system gravimetric capacity of 0.045 kg(H2)/kg(System) and system volumetric capacity of 0.030 kg(H2)/L-System). A density of about 3-4.5 times the nominal value is required to meet the DOE 2025 targets (i.e. system gravimetric capacity of 0.055 kg(H2)/kg(System) and system volumetric capacity of 0.040 kg(H2)/L-System,). Likewise, a material with a maximum adsorption capacity approximately equal to three times that of nominal MOF-5 (R) can meet the 2020 DOE targets, while a maximum capacity about 4.5 times the nominal value is required to meet the 2025 DOE targets. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
机译:开发了一种方法来确定耦合的材料参数和操作条件的范围,以使基于吸附剂的储氢系统达到性能目标。可接受参数的范围形成多维体积或包络。因此,该方法被称为吸附剂可接受性信封。该模型评估整个储罐的性能,该储罐由吸附剂材料,传热系统和压力容器组成。分析了两种情况,均基于流通冷却方法​​,该方法提供了充氢所需的冷却功率,并介绍和讨论了结果。第一个应用程序(正向问题)分析了在各种操作条件下基于MOF-5(R)的储氢床的重量和体积性能。结果表明,在吸收过程中,该系统可在200 s内达到约4 wt%的重量容量和约20 g / L的体积容量。第二个应用程序(反问题)确定了所选材料参数的范围,这些参数是满足美国能源部的重量和体积容量目标所必需的。结果表明,最重要的参数是材料的最大容量和密度。密度约为MOF-5(R)粉末形式的两倍的吸附剂可以达到2020 DOE目标(即系统重量为0.045 kg(H2)/ kg(系统)和系统体积为0.030 kg(系统) H2)/ L-System)。为了达到DOE 2025的目标(即系统重量为0.055 kg(H2)/ kg(系统)和系统体积容量为0.040 kg(H2)/ L-System,要求的密度约为标称值的3-4.5倍, )。同样,最大吸附容量约为标称MOF-5(R)的三倍的材料可以满足2020 DOE目标,而达到2025 DOE目标则需要最大标称值的4.5倍。由Elsevier Ltd代表Hydrogen Energy Publications LLC发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号