首页> 外文期刊>International Journal of Heat and Mass Transfer >A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson-Boltzmann equation
【24h】

A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson-Boltzmann equation

机译:泊松-玻尔兹曼方程在外力作用下电解质溶液电动微通道流动的格子玻尔兹曼模型

获取原文
获取原文并翻译 | 示例
       

摘要

MicroChannel flow with electrolyte solution is often influenced by the presence of a double layer of electrical charges at the interface between the liquid and the wall of a substrate. These surface interactions affect strongly the physical and chemical properties of fluid and substantially influence the heat, mass and momentum transport in microfluidic systems. Traditional computational fluid dynamics methods using the modified Navier-Stokes equation for electrokinetics in solving macroscopic hydrodynamic equations have many difficulties in this area. We present here a lattice Boltzmann model in the presence of external force fields to describe electrokinetic microfluidic phenomena using a Poisson-Boltzmann equation. Pressure is considered as the only external force to drive liquid flow in microchannels. Our results from a 9-bit square lattice Boltzmann model are in excellent agreement with recent experimental data in pressure-driven microchannel flow that could not be fully described by electrokinetic theory. The differences between the predicted and experimental Reynolds numbers from pressure gradients are well within 5%. Our results suggest that the lattice Boltzmann model described here is an effective computational tool to predict the more complex microfluidic systems that might be problematic using conventional methods.
机译:带电解质溶液的微通道流动通常受到液体和基材壁之间界面处双层电荷的影响。这些表面相互作用强烈影响流体的物理和化学性质,并显着影响微流体系统中的热量,质量和动量传输。在解决宏观流体动力学方程时,使用改进的Navier-Stokes方程进行电动学的传统计算流体动力学方法在该领域存在许多困难。我们在这里介绍一个存在外力场的格子Boltzmann模型,以描述使用Poisson-Boltzmann方程的电动微流体现象。压力被认为是驱动液体在微通道中流动的唯一外力。我们从9位方格子Boltzmann模型获得的结果与压力驱动的微通道流动中的最新实验数据非常吻合,而电动理论无法完全描述该数据。雷诺数与压力梯度的预测值和实验值之间的差异在5%以内。我们的结果表明,此处描述的格子Boltzmann模型是一种有效的计算工具,可以预测使用常规方法可能会出现问题的更复杂的微流体系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号