首页> 外文期刊>International Journal of Heat and Mass Transfer >Instantaneous energy separation in a free jet. Part Ⅰ. Flow measurement and visualization
【24h】

Instantaneous energy separation in a free jet. Part Ⅰ. Flow measurement and visualization

机译:自由射流中的瞬时能量分离。第一部分。流量测量和可视化

获取原文
获取原文并翻译 | 示例
       

摘要

"Energy separation" is the re-distribution of the total energy in a fluid flow without external work or heat, and has potential to heat or cool a fluid without using a conventional heating or cooling system. However, currently obtainable heating and/or cooling effects are not big enough for practical applications. It is required to understand the mechanism of energy separation and investigate its enhancement methods. In the present study which consists of two parts, energy separation in a free jet is investigated with instantaneous velocity and total temperature measurements. As a method to enhance energy separation, acoustic excitation with various frequencies is examined. In this first part, an experimental study is performed to investigate the motion of the coherent vortical structure and its response to acoustic excitation in free jets whose Reynolds numbers are 8000 and 120,000. For the low Reynolds number jet, spectral analysis of instantaneous velocity and flow visualization by a schlieren system are performed to characterize the motion of the large scale coherent vortical structure. The frequency of dominant fluctuation, which represents the vortex passing frequency at a given axial location, is around Sr_D ≈ 0.65 at z/D = 1 and moves to Sr_D ≈ 0.4 at z/D = 4. When acoustic excitation is applied, the coherent structure develops more rapidly than in the absence of excitation regardless of the excitation frequency, but very regular and strong vortex pairing is observed only when acoustic excitation with Sr_(ex) = 0.9. The flow characteristics of the high Reynolds number jet are also investigated with spectral analysis. The result shows that the velocity fluctuation level is generally elevated, but the frequency of dominant fluctuation is still within 0.4 ≤ Sr_D ≤ 0.6. The response to acoustic excitation is also very similar to the low Reynolds number jet.
机译:“能量分离”是在没有外部功或热的情况下重新分配流体流中的总能量,并且有潜力在不使用常规加热或冷却系统的情况下加热或冷却流体。但是,当前可获得的加热和/或冷却效果不足以用于实际应用。需要了解能量分离的机理并研究其增强方法。在由两部分组成的本研究中,利用瞬时速度和总温度测量研究了自由射流中的能量分离。作为增强能量分离的方法,研究了各种频率的声激励。在第一部分中,进行了实验研究,以研究雷诺数分别为8000和120,000的自由射流中相干涡结构的运动及其对声激发的响应。对于低雷诺数射流,通过schlieren系统进行瞬时速度和流动可视化的频谱分析,以表征大型相干涡结构的运动。代表给定轴向位置处的涡流通过频率的主要波动频率在z / D = 1时约为Sr_D≈0.65,在z / D = 4时移动至Sr_D≈0.4。当施加声激励时,相干不论激发频率如何,其结构的发展都比不存在激发的情况下要快得多,但是只有在Sr_(ex)= 0.9的声激发下,才能观察到非常规则且强烈的涡旋对。高雷诺数射流的流动特性也通过光谱分析进行了研究。结果表明,速度波动水平总体上有所提高,但主要波动频率仍在0.4≤Sr_D≤0.6范围内。对声激发的响应也与低雷诺数射流非常相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号