首页> 外文期刊>International Journal of Heat and Mass Transfer >Experimental investigation and flow visualization to determine the optimum dimension range of microgap heat sinks
【24h】

Experimental investigation and flow visualization to determine the optimum dimension range of microgap heat sinks

机译:实验研究和流量可视化,以确定微间隙散热器的最佳尺寸范围

获取原文
获取原文并翻译 | 示例
       

摘要

The rapid increase of heat flux in high performance electronic devices has necessitated the development of high capacity thermal management techniques that can support extremely high heat transfer rates. Flow boiling in microgap is very promising for this purpose due to its high heat transfer rate and ease of fabrication. However, the effects of microgap dimension on heat transfer and pressure drop characteristics along with flow visualization have not been investigated extensively. This paper focuses on flow boiling experiments of deionized water in silicon microgap heat sink for ten different microgap dimensions from a range of 80 μm-1000 μm to determine the most effective and efficient range of microgap dimensions based on heat transfer and pressure drop performance. High speed flow visualization is conducted simultaneously along with experiments to illustrate the bubble characteristics in the boiling flow in microgap. The results of this study show that confinement in flow boiling occurs for microgap sizes 500 μm and below and confined slug/annular flow is the main dominant regime whereas physical confinement does not occur for microgap sizes 700 μm and above and bubbly flow is the dominant flow regime. The microgap is ineffective below 100 μm as partial dryout strikes very early and the wall temperature is much higher for a fixed heat flux as microgap size increases above 500 μm. In addition, results show that pressure drop and pressure fluctuation decrease with the increases of gap size whereas wall temperature and wall temperature fluctuation increase with the increases of gap size. A strong dependence of heat transfer coefficient on microgap sizes is observed for microgap sizes 500 μm and below. However, the heat transfer coefficient is independent of microgap size for microgap sizes 700 μm and above.
机译:高性能电子设备中热通量的迅速增加已迫切需要开发能够支持极高传热速率的高容量热管理技术。为此,微间隙中的沸腾沸腾由于其高传热速率和易于制造而非常有前途。但是,微间隙尺寸对传热和压降特性以及流动可视化的影响尚未得到广泛研究。本文重点研究了去离子水在硅微间隙散热器中的沸腾实验,该热沸腾试验针对80μm-1000μm范围内的十种不同的微间隙尺寸,基于传热和压降性能确定最有效的微间隙尺寸范围。高速流动可视化与实验同时进行,以说明微间隙中沸腾流动中的气泡特征。这项研究的结果表明,对于500μm及以下的微间隙,流动沸腾的限制是主要的主导状态,而对于700μm及以上的微间隙,则不会发生物理限制,而气泡的流动是主导的。政权。在100μm以下,微间隙无效,这是因为很早就发生了局部变干,并且当微间隙尺寸增加到500μm以上时,壁温对于固定的热通量来说要高得多。另外,结果表明,随着间隙尺寸的增加,压降和压力波动减小,而随着间隙尺寸的增加,壁温和壁温波动增加。对于500μm及以下的微间隙尺寸,观察到传热系数对微间隙尺寸的强烈依赖性。然而,对于700μm及以上的微间隙尺寸,传热系数与微间隙尺寸无关。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2012年第26期|p.7623-7634|共12页
  • 作者单位

    Department of Mechanical Engineering, National University of Singapore, Engineering Drive 1, Singapore 117576, Singapore;

    Department of Mechanical Engineering, National University of Singapore, Engineering Drive 1, Singapore 117576, Singapore;

    Department of Mechanical Engineering, National University of Singapore, Engineering Drive 1, Singapore 117576, Singapore;

    Department of Mechanical Engineering, National University of Singapore, Engineering Drive 1, Singapore 117576, Singapore;

    Department of Mechanical Engineering, National University of Singapore, Engineering Drive 1, Singapore 117576, Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    microgap heat sink; flow boiling; confinement effect; instabilities; flow visualization;

    机译:微间隙散热器流沸腾限制作用不稳定流可视化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号