首页> 外文期刊>International Journal of Heat and Mass Transfer >Experimental study of flow boiling in a hybrid microchannel-microgap heat sink
【24h】

Experimental study of flow boiling in a hybrid microchannel-microgap heat sink

机译:混合微通道-微间隙散热器中流动沸腾的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

A stable flow boiling operation is key to enhancing the two-phase cooling performance of microchannel heat sinks. To this end, a novel heat sink is developed which integrates a 300 mu m x 600 mu m straight microchannel array in the upstream region with a 25 mm x 600 mu m microgap channel in the downstream region of a 25 mm x 25 mm copper heat sink. Flow boiling experiments are conducted using de-ionized water at 5 different mass fluxes in the range of 100-399 kg/m(2) s, supplied at a fixed inlet temperature of 85.5 degrees C. The downstream heat transfer coefficient in the microgap section shows an M-shaped profile with increasing heat flux and vapor quality. Stable boiling conditions are prevalent across a large span of operating heat flux. Instabilities are experienced only for a short range of low heat flux following ONB. The stabilizing effect is attributed to the larger flow cross-section area offered by the downstream microgap section that allows expanding vapor bubbles to evacuate with lesser hindrance. Flow visualization reveals that a stable annular flow regime is established at moderate to high heat flux during which the stable boiling operation is observed. Thin film evaporation taking place during annular flow conditions results in an increasing trend in the downstream heat transfer coefficient from moderate to high heat flux. Pressure drop associated with the hybrid heat sink is found to be modest and reaches a maximum of 6 kPa at the highest mass flux of 399 kg/m(2) s. A brief comparison of this heat sink is made with its straight microchannel and microgap heat sink counterparts. The hybrid heat sink shows a heat transfer performance that is superior to the microgap heat sink while poorer than the straight microchannel heat sink although it offers a better boiling stability than the straight microchannel heat sink. It however lowers the pressure drop compared to the straight microchannel heat sink. (C) 2019 Elsevier Ltd. All rights reserved.
机译:稳定的沸腾操作对于增强微通道散热器的两相冷却性能至关重要。为此,开发了一种新颖的散热器,该散热器在上游区域集成了一个300μmx 600μm的直线微通道阵列,在25 mm x 25 mm的铜散热器的下游区域集成了一个25 mm x 600μm的微间隙通道。使用去离子水在100-399 kg / m(2)s范围内以5种不同的质量通量进行流沸腾实验,并在85.5摄氏度的固定入口温度下提供。微间隙部分的下游传热系数显示出随着热通量和蒸汽质量的增加呈M形的轮廓。在大范围的工作热通量中,稳定的沸腾条件普遍存在。仅在ONB之后短时间范围内的低热通量会出现不稳定。稳定作用归因于下游微间隙部分所提供的较大的流动横截面面积,该横截面允许膨胀的蒸气气泡以较小的障碍物排出。流动可视化显示,在中等至高热通量下建立了稳定的环形流动状态,在此期间观察到稳定的沸腾操作。在环形流动条件下发生的薄膜蒸发导致下游传热系数从中等到较高的热通量增加的趋势。发现与混合散热器相关的压降适度,并且在399 kg / m(2)s的最高质量通量下达到最大6 kPa。此散热器与直的微通道和微间隙散热器对应物进行了简要比较。混合散热器的传热性能优于微间隙散热器,但比直通道微通道散热器差,尽管它比直通道微通道散热器具有更好的沸腾稳定性。但是与直通道微通道散热器相比,它降低了压降。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号