...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Microdroplet evaporation on superheated surfaces
【24h】

Microdroplet evaporation on superheated surfaces

机译:过热表面上的微滴蒸发

获取原文
获取原文并翻译 | 示例

摘要

A comprehensive experimental investigation on water microdroplet evaporation is presented from the standpoint of phase-change cooling technologies. The study investigates microdroplet evaporation on a variety of different surface materials at surface temperatures ranging from 25 ℃ to 250 ℃. The temporal evolution of the droplet profile and contact line dynamics are measured using high-speed photography and image analysis methods. The material systems tested consist of (1) thin-film surface coatings on glass substrates (e.g., Al, Ti, Cu, and SAMs) and (2) Cu substrates with different surface morphologies (e.g., mir ror polished, 800-grit sanded, and micron-sized Cu pillar arrays). As expected, changes in surface energy influences the contact line dynamics. Changes in surface energy, however, showed no systematic influ ence on the evaporation efficiency. For all systems studied, the evaporation rate (m_(LG)) scales linearly with the microdroplets contact radius (i.e., m_(LG)∝ R) and stick-slip contact line dynamics are observed. For example, the evaporation efficiency reduces after contact line depinning due to a reduction in the total length of the solid-liquid-vapor contact line, whereas, before depinning, m_(LG) is a constant and directly proportional to the surface temperature, contact radius, and substrate thermal conductivity. For micro droplet evaporation on thin-film surfaces, maximum evaporation rates (m~(max)_(LG)≌ 32 ± 8 μg/s) and evapo rative heat fluxes (q_(max) ≌ 600 ± 100 W/cm~2) are observed at superheats of 70 ℃ ≤ AT ≤ 130 ℃. These maxima in the evaporative heat transfer performance signify a transition in the heat transfer process from a purely microdroplet evaporation regime to a droplet/film boiling regime (which is analogous to the critical heat flux observed in pool boiling). For microdroplet evaporation on Cu substrates, droplet/film boiling occurs at much lower superheats (e.g., 10 ℃ ≤ AT ≤ 25 ℃); yet, comparable maximum evapora tion rates (m~(max)_(LG) ≌ 36 ± 8 μg/s) and evaporative heat fluxes (q_(max) ≌ 750 ±150 W/cm~2) are observed. In short, this work suggests a reliable upper limit for the evaporation efficiency of m~(max)_(LG) ≌ 35 ± 5 μg/s during water microdroplet evaporation on superheated surfaces (which turns out to be independent of substrate thermal conductivity, surface structure, and surface hydrophobicity).
机译:从相变冷却技术的角度出发,对水微滴蒸发进行了全面的实验研究。该研究研究了表面温度从25℃到250℃的各种表面材料上的微滴蒸发。使用高速摄影和图像分析方法测量液滴轮廓的时间演变和接触线动力学。所测试的材料系统包括(1)玻璃基材(例如Al,Ti,Cu和SAMs)上的薄膜表面涂层,以及(2)具有不同表面形态(例如镜面抛光,800砂砾打磨)的Cu基材,以及微米级的铜柱阵列)。不出所料,表面能的变化会影响接触线的动力学。然而,表面能的变化对蒸发效率没有系统的影响。对于所有研究的系统,蒸发速率(m_(LG))与微滴接触半径(即m_(LG)∝ R)成线性比例,并且观察到粘滑接触线动力学。例如,由于固-液-气接触线总长度的减少,接触线脱钉后的蒸发效率降低,而在脱钉前,m_(LG)是一个常数,与表面温度成正比,接触半径和基板的热导率。对于薄膜表面上的微滴蒸发,最大蒸发速率(m〜(max)_(LG)≌32±8μg/ s)和蒸发热通量(q_(max))600±100 W / cm〜2 )是在70℃≤AT≤130℃的过热下观察到的。蒸发传热性能的这些最大值表示传热过程中从纯微滴蒸发态到液滴/膜沸腾态的转变(这类似于池沸腾中观察到的临界热通量)。对于在Cu衬底上的微滴蒸发,在较低的过热度(例如10℃≤AT≤25℃)下会发生液滴/薄膜沸腾;然而,可观察到的最大蒸发速率(m〜(max)_(LG)≌36±8μg/ s)和蒸发热通量(q_(max)≌750±150 W / cm〜2)相当。简而言之,这项工作提出了在过热表面上的水微滴蒸发过程中,m〜(max)_(LG)5 35±5μg/ s的蒸发效率的可靠上限(事实证明,该效率与基材的热导率无关,表面结构和表面疏水性)。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer 》 |2012年第22期| p.5793-5807| 共15页
  • 作者单位

    Air Force Research Laboratory, Materials and Manufacturing Directorate, Thermal Sciences and Materials Branch, Wright-Patterson AFB, OH 45433, United States,Universal Technology Corporation, 1270 N. Fairfield Rd., Dayton, OH 45432, United States;

    Air Force Research Laboratory, Propulsion Directorate, Thermal and Electrochemical Branch, Wright-Patterson AFB, OH 45433, United States,University of Dayton Research Institute, University of Dayton, Dayton, OH 45410, United States;

    Air Force Research Laboratory, Propulsion Directorate, Thermal and Electrochemical Branch, Wright-Patterson AFB, OH 45433, United States;

    Air Force Research Laboratory, Propulsion Directorate, Thermal and Electrochemical Branch, Wright-Patterson AFB, OH 45433, United States,University of Dayton Research Institute, University of Dayton, Dayton, OH 45410, United States;

    Air Force Research Laboratory, Propulsion Directorate, Thermal and Electrochemical Branch, Wright-Patterson AFB, OH 45433, United States,University of Dayton Research Institute, University of Dayton, Dayton, OH 45410, United States;

    Air Force Research Laboratory, Propulsion Directorate, Thermal and Electrochemical Branch, Wright-Patterson AFB, OH 45433, United States,University of Dayton Research Institute, University of Dayton, Dayton, OH 45410, United States;

    Air Force Research Laboratory, Materials and Manufacturing Directorate, Thermal Sciences and Materials Branch, Wright-Patterson AFB, OH 45433, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    evaporation; water; microdroplet; numerical simulation; structured surfaces; depinning;

    机译:蒸发;水;微滴数值模拟结构化表面;固定;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号