首页> 外文期刊>International Journal of Heat and Mass Transfer >Analysis of thermal efficiency via analysis of heat flow and entropy generation during natural convection within porous trapezoidal cavities
【24h】

Analysis of thermal efficiency via analysis of heat flow and entropy generation during natural convection within porous trapezoidal cavities

机译:通过分析多孔梯形腔内自然对流期间的热流和熵产生来分析热效率

获取原文
获取原文并翻译 | 示例
       

摘要

Thermal management via distributions of heatlines and entropy generation for natural convection within trapezoidal cavities in presence of hot left wall, cold right wall and adiabatic horizontal walls has been studied in this article. Heat flow visualization has been carried out via heatline concept. Galerkin finite element method has been used to analyze streamlines, isotherms, heatlines, entropy generation due to fluid friction and heat transfer over wide range of parameters (10~(-5) ≤ Da ≤ 10~(-3), 0.015 ≤ Pr ≤ 1000 at Ra = 10~6). At low Darcy number (Da = 10~(-5)), conduction dominant heat transfer is found based on low magnitudes of streamlines and heatlines. Heatlines indicate that heat transfer occurs from hot left wall to cold right wall and thermal mixing is found inside the cavity. The thermal mixing is enhanced as Da increases from 10~(-5) to 10~(-3). The thermal gradients are high near the lower portion of left wall and near upper portion of right wall for Da ≥ 10~(-4) irrespective of φ and Pr and thus, thermal boundary layer thickness is small along those zones. The maximum entropy generation due to fluid friction (S_(ψ,max)) occurs along the left wall for φ = 30° and 90° irrespective of Pr whereas that occurs along the right wall for φ = 60° at Da = 10~(-3). The maximum entropy generation due to heat transfer (S_(θ,max)) occurs at the left edge of bottom wall irrespective of Pr and Da for φ = 30° and 60° whereas that occurs at the left edge of bottom wall and right edge of top wall for φ = 90° with Da = 10~(-5) and 10~(-4). At φ = 90° with Da = 10~(-3), S_(θ,max) occurs along both side walls for Pr = 0.015 whereas that occurs along left wall for Pr = 1000. It is found that total entropy generation is high for Pr = 1000 compared to that of Pr = 0.015 at higher Da. It is also found that the trapezoidal cavities with φ = 60° and 90° correspond to less entropy generation with significant heat transfer rates at Da = 10~(-3) for Pr = 0.015 and Pr = 1000 and thus the trapezoidal cavities with φ ≥ 60° may be the optimal design for thermal processing of Pr = 0.015 and Pr = 1000 fluids.
机译:本文研究了在热左壁,冷右壁和绝热水平壁存在的情况下,梯形腔内自然对流的热线分布和熵产生的热管理。通过热线概念进行了热流可视化。已使用Galerkin有限元方法来分析各种参数(10〜(-5)≤Da≤10〜(-3),0.015≤Pr≤的参数引起的流线,等温线,热线,由于流体摩擦和热传递而产生的熵Ra = 10〜6时为1000)。在低达西数(Da = 10〜(-5))下,基于流线和热线的量低,发现传导占主导地位的传热。热线表明热量从热的左壁传递到冷的右壁,并且在腔体内发现热混合。随着Da从10〜(-5)增加到10〜(-3),热混合得到增强。对于Da≥10〜(-4),与φ和Pr无关,左壁下部附近和右壁上部附近的热梯度均较高,因此沿这些区域的热边界层厚度较小。与流体无关,由于流体摩擦(S_(ψ,max))产生的最大熵沿φ= 30°和90°沿左壁发生,而与Pr无关,而在Da = 10〜(φ时沿φ= 60°沿右壁发生最大熵。 -3)。在Φ= 30°和60°时,无论Pr和Da多少,由于传热产生的最大熵产生(S_(θ,max))出现在底壁的左边缘,而发生在底壁的左边缘和右边缘的最大熵产生φ= 90°的顶壁的角度为Da = 10〜(-5)和10〜(-4)。在φ= 90°且Da = 10〜(-3)时,对于Pr = 0.015,S_(θ,max)沿两个侧壁发生,而对于Pr = 1000,S_(θ,max)沿左侧发生。发现总熵产生高Pr = 1000时,Pr = 0.015时,Da较高。还发现,当Pr = 0.015和Pr = 1000时,φ= 60°和90°的梯形腔在Da = 10〜(-3)处具有显着的传热速率时,熵产生较少,因此φ​​的梯形腔≥60°可能是Pr = 0.015和Pr = 1000流体热处理的最佳设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号