首页> 外文学位 >A CFD design study of an Air Reactor Cavity Cooling System using Traditional Thermal Analysis Techniques and Entropy Generation Analysis.
【24h】

A CFD design study of an Air Reactor Cavity Cooling System using Traditional Thermal Analysis Techniques and Entropy Generation Analysis.

机译:使用传统热分析技术和熵产生分析的空气反应堆腔冷却系统的CFD设计研究。

获取原文
获取原文并翻译 | 示例

摘要

Current research in advanced reactor designs has focused on passive safety systems, where in the event of a loss of cooling to the reactor core, excess heat will be removed by a passive safety heat removal system. A safety system is classified as 'passive' because it does not require a pump to circulate the fluid (i.e., forced circulation) or operator action to maintain cooling. The system relies on the natural circulation of a fluid (i.e., fluid density differences and gravity) to transfer the heat. Passive safety system designs include features that enhance natural circulation, such as using smooth pipes, minimizing flow obstructions, and maximizing density differences, which increase fluid velocity and hence the removal of more heat.;This research consisted of a CFD study of wall-bounded transitional flows and a passive reactor cavity cooling system. Yet in an effort to better understand fundamental phenomena, relative to the limits of natural circulation turbulence modeling, only forced circulation CFD analyses were performed. The initial phase of this research consisted of two types of CFD studies: 2D entropy generation rate boundary layer analyses of an isothermal transitional fluid flow over a flat plate, and 3D thermal performance analyses of a 1/4-scale experimental air reactor cavity cooling system. The 2D flat plate boundary layer studies were important in that they provided insight into flow features, such as boundary layer development and entropy generation rate, in the 3D RCCS ducts as the air transitions from laminar to turbulent flow.;Using the results of the initial study as a baseline, this work analyzed the viscous and thermal boundary layer development, including estimating the entropy generation rate, in the heated duct section of the RCCS, which is characterized by nonuniform flow and heat transfer. A new engineering design process was developed, which incorporates not only traditional heat transfer and fluid flow (HTFF) analysis techniques but entropy generation minimization (EGM) concepts as well. This analysis process was successfully applied to the existing 1/4-scale experimental air RCCS, resulting in the identification of the primary entropy dissipation mechanism and an improved design.
机译:当前对先进反应堆设计的研究集中在被动安全系统上,在这种情况下,如果反应堆堆芯失去冷却,则多余的热量将通过被动安全排热系统排出。安全系统被归类为“被动”,因为它不需要泵来使流体循环(即,强制循环)或操作员采取措施保持冷却。该系统依赖于流体的自然循环(即,流体密度差和重力)来传递热量。被动安全系统的设计包括增强自然循环的功能,例如使用光滑的管道,使流动障碍最小化以及使密度差异最大化,从而增加了流体速度,从而消除了更多的热量。过渡流和被动反应堆腔冷却系统。然而,为了更好地理解基本现象,相对于自然循环湍流建模的局限性,仅执行了强制循环CFD分析。该研究的初始阶段包括两种类型的CFD研究:平板上的等温过渡流体流动的2D熵产生速率边界层分析,以及1/4比例的实验空气反应堆腔冷却系统的3D热性能分析。二维平板边界层研究非常重要,因为它们可以洞悉空气从层流过渡到湍流时在3D RCCS管道中的流动特征,例如边界层发展和熵产生速率。作为一项基础研究,这项工作分析了RCCS加热管道部分的粘性和热边界层的发展,包括估计了熵的产生速率,其特征是流动和传热不均匀。开发了一种新的工程设计过程,该过程不仅结合了传统的传热和流体流动(HTFF)分析技术,而且还融合了熵产生最小化(EGM)概念。该分析过程已成功应用于现有的1/4比例实验空气RCCS,从而确定了主要的熵耗散机理并进行了改进。

著录项

  • 作者

    Hamman, Kurt D.;

  • 作者单位

    University of Idaho.;

  • 授予单位 University of Idaho.;
  • 学科 Nuclear engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号