首页> 外文期刊>International Journal of Heat and Mass Transfer >Three dimensional thermal diffusion in anisotropic heterogeneous structures simulated by a non-dimensional lattice Boltzmann method with a controllable structure generation scheme based on discrete Gaussian quadrature space and velocity
【24h】

Three dimensional thermal diffusion in anisotropic heterogeneous structures simulated by a non-dimensional lattice Boltzmann method with a controllable structure generation scheme based on discrete Gaussian quadrature space and velocity

机译:基于离散高斯正交空间和速度的可控结构生成方案的无量纲格子玻尔兹曼方法模拟的各向异性异质结构中的三维热扩散

获取原文
获取原文并翻译 | 示例
           

摘要

A new Controllable Structure Generation Scheme (CSGS) based on discrete Gaussian quadrature space and velocity is presented and used to generate multiple-phase random isotropic homogenous and shape-constrained anisotropic heterogeneous structures. The primary advantage of the new CSGS over the existing random structure generation growth method is the ability to model a wide variety of structures by controlling the shape through relatively simple constraint indexes. The growth speed probability function is introduced to control the mesoscopic porosities and mixture/separation of material phases. The model is applied to generate four packed structure types (shapeless random, separated solid shapes, separated random-filled shapes, and random-mixture-filled shapes). Three-dimensional steady and transient thermal diffusion are simulated by Non-Dimensional Lattice Boltzmann Method (NDLBM). The steady state results are compared to measured data available in the published literature. The transient results reveal how the mesoscopic shape of a structure impacts thermal diffusion. With equivalent macroscopic volume fractions, structures with higher mesoscopic volume fractions of high conductivity phases possess higher effective thermal conductivity/diffusivity because there is greater connectivity of the higher conductive material at mesoscopic scale.
机译:提出了一种基于离散高斯正交空间和速度的可控结构生成方案(CSGS),用于生成多相随机各向同性均质和形状受限的各向异性异质结构。与现有的随机结构生成增长方法相比,新的CSGS的主要优势在于能够通过相对简单的约束指标控制形状来建模各种结构。引入生长速度概率函数来控制介观孔隙率和材料相的混合/分离。该模型用于生成四种填充结构类型(无形随机,分离的实体形状,分离的随机填充形状和随机混合物填充形状)。通过无量纲格子玻尔兹曼方法(NDLBM)模拟了三维稳态和瞬态热扩散。将稳态结果与已发表文献中提供的测量数据进行比较。瞬态结果揭示了结构的介观形状如何影响热扩散。在等效的宏观体积分数下,具有较高电导率相的介观体积分数的结构具有较高的有效热导率/扩散率,因为在介观尺度上较高导电材料的连通性更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号