首页> 外文期刊>Solar Energy >Experimental and numerical investigations on a solar tracking concentrated photovoltaic-thermal system with a novel non-dimensional lattice Boltzmann method
【24h】

Experimental and numerical investigations on a solar tracking concentrated photovoltaic-thermal system with a novel non-dimensional lattice Boltzmann method

机译:新型无量纲格子玻尔兹曼法的太阳跟踪集中式光伏热系统的实验和数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

A small scale solar tracking concentrated photovoltaic-thermal (CPV-T) system was investigated to enhance the energy efficiency of photovoltaic systems. The experimental measurement was firstly done to obtain the environmental parameters and on site efficiencies of the system. A novel Non-Dimensional Lattice Boltzmann Method (NDLBM) was then developed to simulate the transient fluid flow and heat transfer of the CPV-T receiver. This NDLBM establishes a whole set of dimensionless form of lattice Boltzmann equations and boundary conditions with dimensionless governing parameters in both macroscopic and mesoscopic length scales. The relaxation time is expressed in form of the mesoscopic Reynolds number instead of the viscosity, making the relationship between the mesh size and simulation range clearer. The present physics-based dimensionless inlet/outlet flow and heat flux boundary conditions make it possible to simulate the present high solar irradiance, large temperature difference, and high velocity mixed convection heat transfer problem. The effects of the flow rate, inlet flow temperature and distributions of the inlet/outlet on the heat transfer are obtained with NDLBM simulations over a wide range of Reynolds number, Rayleigh number, and Richardson number. The results provide a full understanding of the mechanics of the efficiency enhancement of the CPV-T system due to water cooling.
机译:为了提高光伏系统的能效,研究了小型太阳能跟踪集中式光伏热能(CPV-T)系统。首先进行实验测量以获得环境参数和系统的现场效率。然后,开发了一种新颖的无量纲格子玻尔兹曼方法(NDLBM),以模拟CPV-T接收器的瞬态流体流动和传热。此NDLBM在宏观和介观长度尺度上建立了一整套无量纲形式的格子Boltzmann方程和边界条件,并具有无量纲的控制参数。弛豫时间以介观雷诺数而不是粘度的形式表示,从而使网眼尺寸与模拟范围之间的关系更加清晰。当前基于物理学的无量纲的进出口流量和热通量边界条件使得可以模拟当前的高太阳辐照度,大温差和高速混合对流传热问题。通过NDLBM模拟可在很大的雷诺数,瑞利数和理查森数范围内获得流速,入口流动温度以及入口/出口分布对传热的影响。结果充分了解了由于水冷而提高了CPV-T系统效率的机理。

著录项

  • 来源
    《Solar Energy》 |2014年第9期|145-158|共14页
  • 作者单位

    Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau;

    Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;

    Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Concentrator; NDLBM; Photovoltaic-thermal system; Water cooling;

    机译:选矿厂NDLBM;光伏热力系统;水冷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号