首页> 外文期刊>International Journal of Heat and Mass Transfer >Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants
【24h】

Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants

机译:基于HFE 7000的纳米制冷剂的传热和熵产生分析

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, two dimensional numerical simulations of forced convection flow of HFE 7000 based nanofluids in a horizontal circular tube subjected to a constant and uniform heat flux in laminar flow were performed by using single phase homogeneous model. Four different nanofluids considered in the present study are Al_2O_3, CuO, SiO_2 and MgO nanoparticles dispersed in pure HFE 7000. The simulations were performed with particle volumetric concentrations of 0, 1,4 and 6% and Reynolds number of 400,800,1200 and 1600. Most of the previous studies on the forced convective flow of nanofluids have been investigated through hydrodynamic and heat transfer analysis. Therefore, there is limited number of numerical studies which include both heat transfer and entropy generation investigations of the convective flow of nanofluids. The objective of the present work is to study the influence of each dispersed particles, their volume concentrations and Reynolds number on the hydrodynamic and thermal characteristics as well as the entropy generation of the flow. In addition, experimental data for Al_2O_3-wa-ter nanofluid was compared with the simulation model and high level agreement was found between the simulation and experimental results. The numerical results reveal that the average heat transfer coefficient augments with an increase in Reynolds number and the volume concentration for all the above considered nanofluids. It is found that the highest increase in the average heat transfer coefficient is obtained at the highest volume concentration ratio (6%) for each nanofluids. The increase in the average heat transfer coefficient is found to be 17.5% for MgO-HFE 7000 nanofluid, followed by Al_2O_3-HFE 7000 (16.9%), CuO-HFE 7000 (15.1%) and SiO_2-HFE 7000 (14.6%). However, the results show that the enhancement in heat transfer coefficient is accompanied by the increase in pressure drop, which is about (9.3-28.2%). Furthermore, the results demonstrate that total entropy generation reduces with the rising Reynolds number and particle volume concentration for each nanofluid. Therefore, the use of HFE 7000 based MgO, Al_2O_3, CuO and SiO_2 nanofluids in the laminar flow regime is beneficial and enhances the thermal performance.
机译:在这项研究中,通过使用单相均质模型对HFE 7000基纳米流体在水平圆管中的层流中恒定且均匀的热通量进行强迫对流流动的二维数值模拟。本研究中考虑的四种不同的纳米流体分别是分散在纯HFE 7000中的Al_2O_3,CuO,SiO_2和MgO纳米颗粒。模拟的粒子体积浓度为0、1,4和6%,雷诺数为400,800,1200和1600。以前关于纳米流体强迫对流的大多数研究都是通过流体动力学和传热分析进行的。因此,数量有限的数值研究包括纳米流体对流的传热和熵产生研究。本工作的目的是研究每个分散的颗粒,其体积浓度和雷诺数对流体动力学和热学特性以及流的熵产生的影响。另外,将Al_2O_3-三元纳米流体的实验数据与模拟模型进行了比较,发现模拟与实验结果之间存在较高的一致性。数值结果表明,所有上述纳米流体的平均传热系数均随雷诺数和体积浓度的增加而增加。发现在每种纳米流体的最高体积浓度比(6%)下,平均传热系数的增加最大。发现MgO-HFE 7000纳米流体的平均传热系数提高了17.5%,其次是Al_2O_3-HFE 7000(16.9%),CuO-HFE 7000(15.1%)和SiO_2-HFE 7000(14.6%)。但是,结果表明,传热系数的增加伴随着压降的增加,大约为(9.3-28.2%)。此外,结果表明,每个纳米流体的总熵产生随着雷诺数和颗粒体积浓度的增加而降低。因此,在层流态中使用基于HFE 7000的MgO,Al_2O_3,CuO和SiO_2纳米流体是有益的,并且可以提高热性能。

著录项

  • 来源
  • 作者

    H.U. Helvaci; Z.A. Khan;

  • 作者单位

    Bournemouth University, NanoCorr, Energy and Modelling (NCEM), Faculty of Science and Technology, Bournemouth BH12 5BB, UK,Faculty of Science and Technology, Fern Barrow, Talbot Campus, Bournemouth University, Poole, Dorset BH12 5BB, UK;

    Bournemouth University, NanoCorr, Energy and Modelling (NCEM), Faculty of Science and Technology, Bournemouth BH12 5BB, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CFD; Nanofluid; Heat transfer coefficient; Pressure loss; Entropy generation;

    机译:差价合约纳米流体传热系数;压力损失;熵产生;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号