首页> 外文期刊>International Journal of Heat and Mass Transfer >Molecular Insights into Water Vapor Adsorption and Interfacial Moisture Stability of Hybrid Perovskites for Robust Optoelectronics
【24h】

Molecular Insights into Water Vapor Adsorption and Interfacial Moisture Stability of Hybrid Perovskites for Robust Optoelectronics

机译:用于稳健光电子杂交钙质的水蒸气吸附和界面湿度稳定性的分子见解

获取原文
获取原文并翻译 | 示例
       

摘要

Understanding interfacial mass transfer processes, such as the water vapor adsorption-induced degradation of hybrid perovskites, is vital for improving the durability and performance of their optoelectronic devices in the ambient atmosphere with humidity. In this paper, vapor adsorption on prototypical MAPbl_3, terminated by [MAI]~0 and [Pbl_2]~0 surface, at different relative humidity (RH) levels is studied using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The resulting vapor adsorption isotherms match the Brunauer-Emmett-Teller (BET) adsorption model with heats of adsorption of 0.510 and 0.609 eV, respectively, for water monolayers on [MAI]~0 and [PbI_2]~0. The formation of water monolayer on [MAI]~0 (for RH > 30%) is consistent with its lower hydrophilicity compared to [Pbi_2]~0 (for RH > 10%), reflected from the larger water contact angle predicted. Based on predicted water surface coverages at various RHs, the moisture-induced surface degradation kinetics is studied using MD simulations and transition-state theory. Humidity has a minor impact on the degradation energy barriers due to the similar ion removal pathway by water solvation, but strongly affects the ion dissociation rates through the frequency of attempts to attack surface ions. [MAI]~0 is more vulnerable against water than [PbI_2]~0, despite its lower hydrophilicity, implying that long-term exposed MAPbI_3 are mostly terminated by [PbI_2]~0. Furtherly, averaged degradation material loss rates of 5.8 - 13.1 μm/s are estimated at 30 -80% RH levels and 300 K, which is consistent with experiment observations. Finally, we offer a picture for the water-diffusion-based degradation mechanism and elucidate interesting hydrogen-bonding features at the vapor-MAPbI_3 interface. This research provides quantitative insights into the inherent vapor-perovskite interactions and addresses the moisture instability mechanisms in metal halide perovskites towards the rational design of water-resistant, long term stable and efficient optoelectronic devices.
机译:了解界面传质过程,例如杂交钙酸盐的水蒸气吸附诱导的降解,对于改善其在环境大气中的光电器件的耐久性和性能以及湿度至关重要。在本文中,使用大规范蒙特卡罗(GCMC)和分子动力学(MD)模拟,研究了在不同相对湿度(RH)水平上终止的原型MapBl_3的蒸汽吸附,终止于不同的相对湿度(RH)水平。和分子动力学(MD)模拟。所得到的蒸汽吸附等温线与0.510和0.609eV的吸附热量分别匹配Brunauer-Emmett-expers(Bet)吸附模型,对于[MAI]〜0和[PBI_2]〜0的水单层。与较大的水接触角反射的较大的水接触角相比,水单层在[MAI]〜0上(对于RH> 30%)的形成符合其较低的亲水性。基于各种RH的预测水表面覆盖,使用MD模拟和过渡状态理论研究了水分诱导的表面降解动力学。由于水溶化类似的离子去除途径,湿度对降解能量屏障具有微小的影响,但是通过试图攻击表面离子的频率强烈影响离子解离速率。 [Mai]〜0更容易受到水的伤害而不是π〜0,尽管它较低的亲水性,这意味着长期暴露的MAPBi_3大多终止于[PBI_2]〜0。此外,平均降解材料损失率为5.8-13.1μm/ s,估计为30 -80%的RH水平和300 k,这与实验观察一致。最后,我们为水分扩散的降解机构提供了一张图片,并在蒸汽-MapBi_3界面处阐明有趣的氢键特征。该研究提供了对固有的蒸汽 - 钙钛矿相互作用的定量见解,并解决了金属卤化物钙矿的水分不稳定机制,朝向防水,长期稳定高效的光电器件的合理设计。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2021年第8期|121334.1-121334.10|共10页
  • 作者单位

    Key Laboratory for Power Machinery and Engineering of Ministry of Education School of Mechanical and Power Engineering Shanghai Jiao long University Shanghai 200240 China;

    Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing Jiangsu 210096 China;

    Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing Jiangsu 210096 China;

    Department of Materials Science and Engineering Faculty of Engineering Monash University Clayton Victoria 3800 Australia;

    Department of Mechanical Engineering Materials Science and Engineering Program Florida State University Tallahassee Florida 32310 United States;

    Department of Mechanical Engineering Materials Science and Engineering Program Florida State University Tallahassee Florida 32310 United States;

    Key Laboratory for Power Machinery and Engineering of Ministry of Education School of Mechanical and Power Engineering Shanghai Jiao long University Shanghai 200240 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    adsorption; diffusion; interfacial mass transfer; moisture-induced degradation; molecular simulation; hybrid perovskites;

    机译:吸附;扩散;界面传质;湿气诱导的降解;分子模拟;Hybrid Perovskites.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号