首页> 外文期刊>International Journal of Heat and Mass Transfer >The generalized periodic boundary condition for microscopic simulations of heat transfer in heterogeneous materials
【24h】

The generalized periodic boundary condition for microscopic simulations of heat transfer in heterogeneous materials

机译:异构材料中传热微观模拟的广义周期边界条件

获取原文
获取原文并翻译 | 示例
       

摘要

Porous and composite materials have been increasingly used in many heat transfer applications due to their enhanced thermal performance, and extensive studies have been conducted for a better scientific understanding of the heat transfer processes in such materials especially at the microscopic level. For heterogeneous materials with periodic microscopic structures, analysis can be performed over one such periodic unit if appropriate boundary conditions are applied. However, assumptions with no mathematical or physical justifications are often involved in previous studies, and this casts doubt on the accuracy and reliability of these results. In this study, a new set of boundary conditions are established based on rigorous mathematical derivations. The classical periodic boundary condition is generalized to incorporate the temperature differences between each pair of opposite boundaries of the periodic unit, and the global thermal gradient can be applied in arbitrary directions relative the structural periodicity. Also the interface between constituents in composite materials (or the fluid-solid interface in porous materials) is modeled according to the conjugate condition. This explicit approach incorporates the thermophysical properties of individual constituent materials and the possible thermal resistance at constituent interface, and thus provides a more complete and realistic representation of the heterogeneous system. This method with the generalized periodic boundary condition (GPBC) is carefully validated by comparing the temperature fields and effective conductivity for a two-dimensional (2D) heterogeneous model obtained from a direct simulation of a large domain size without using our boundary method and from one-unit simulations but with various periodic unit selections. The excellent agreement observed in these results indicates that our GPBC method correctly and accurately represents the underlying relationships in the thermal fields among periodic units. We also compare the simulation results for a 2D heterogeneous model with inclined poor conductivity rods in the middle, using our GPBC method and the insulated unit method (IUM) in previous publications; and remarkable differences in temperature fields and heat flux patterns are observed. Analysis and discussions are provided to show the unrealistic features in the IUM results due to the artificial assumptions on the boundary conditions. On the other hand, the temperature field from our GPBC method is consistent with intuitive physical considerations. The effects of constituent composition, conductivity and interface conductance on the effective thermal conductivity for a simple 2D heterogeneous material model, as well as the thermal flows with different Reynolds and Prandtl numbers through a staggered array of square blocks, are also examined. Despite the model simplicity, several interesting features are noticed, such as the heat flux response to changes in constituent conductivity and interface resistance and the saturation states of effective conductivity. Such information is valuable for a better understanding of the complex relationships between the microscopic structure and properties and the macroscopic thermal performances of composite and porous materials. The GPBC method developed in this work can also be readily implemented in typical numerical techniques in computational heat transfer such as the finite volume method, finite element method, and lattice Boltzmann method.
机译:由于其增强的热性能,多孔和复合材料越来越多地用于许多传热应用,并且已经进行了广泛的研究,以更好地对这些材料中的传热过程进行了更好的科学理解,特别是在微观水平。对于具有周期性微观结构的异质材料,如果应用适当的边界条件,可以在一个这样的周期性单元上进行分析。然而,没有数学或物理理由的假设通常在以前的研究中涉及,这对这些结果的准确性和可靠性表示怀疑。在本研究中,基于严格的数学推导来建立新的边界条件。经典周期性边界条件是推广的,以结合周期性单元的每对相反边界之间的温度差,并且全局热梯度可以以任意的方向施加相对于结构周期性。此外,复合材料中的成分之间的界面(或多孔材料中的流体 - 固体界面)是根据缀合条件进行建模的。这种明确的方法包括单个组成材料的热物理性质和在组成界面处的可能热阻,因此提供了不均相系统的更完整和现实的表示。通过比较从大畴大小的直接模拟获得的二维(2D)异构模型的温度场和有效电导率来仔细验证具有广义周期性边界条件(GPBC)的方法,而无需使用我们的边界方法,并且从一个 - 单独的模拟,但具有各种周期性的单位选择。在这些结果中观察到的很好的协议表明我们的GPBC方法正确准确地代表了周期性单元之间的热场中的底层关系。我们还使用先前出版物中的GPBC方法和绝缘单元方法(IUM)在中间倾斜差导电杆的2D异质模型进行模拟结果。观察到温度场和热通量图案的显着差异。提供了分析和讨论,以表明由于边界条件上的人为假设,因此引起了IUM结果的不切实际的特征。另一方面,来自我们的GPBC方法的温度场与直观的物理考虑一致。还研究了组成组成,导电性和界面电导对简单2D异构材料模型的有效导热率的影响,以及通过交错的方形块的不同雷诺和普朗特数的热流。尽管模型简单,但是已经注意到了几个有趣的特征,例如热量通量对组成电导率和界面电阻的变化以及有效导电性的饱和状态。这些信息对于更好地理解微观结构和性质与复合材料和多孔材料的宏观热性能之间的复杂关系。在该工作中开发的GPBC方法也可以很容易地以典型的数值技术在计算传热中实现,例如有限体积法,有限元方法和格子Boltzmann方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号