...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Thermal atomization during droplet impingement on superhydrophobic surfaces: Influence of Weber number and micropost array configuration
【24h】

Thermal atomization during droplet impingement on superhydrophobic surfaces: Influence of Weber number and micropost array configuration

机译:超疏水表面上液滴冲击期间的热雾化:韦伯号和微孔阵列配置的影响

获取原文
获取原文并翻译 | 示例
           

摘要

An experimental study of thermal atomization intensity during droplet impingement on superheated hy-drophobic and superhydrophobic surfaces of varying microstructure was performed. Thermal atomization in these scenarios is the result of droplet boiling, where vapor bubbles burst upwards through the droplet lamella, causing a fine spray of secondary droplets. A smooth hydrophobic surface and three post-patterned superhydrophobic surfaces of similar solid fraction but differing post size were investigated over a range of surface temperatures from 120 "C to 320 °C and Weber numbers from 20 to 200. Trends in atomization intensity were characterized using a high-speed image processing technique. Changes in surface temperature, Weber number, and microstructure configuration were shown to significantly influence atomization intensity, and these parameters are thought to be directly linked to three main mechanisms accounting for atomization dynamics in impingement scenarios. These mechanisms are vapor generation at the liquid-solid interface of the impinging droplet, vapor bursting through the spreading lamella, and vapor escape laterally beneath the droplet. Vapor generation increases with an increase in heat transfer to the droplet, which may be produced by increasing surface temperature or increasing liquid-solid contact through droplet wetting. Vapor bursting upwards through the lamella depends mainly on lamella thickness which decreases with increasing Weber number. Finally, vapor escape beneath the droplet may occur as vapor flows laterally through the micropost arrays. This is found to be enhanced by increasing the spacing between structures. These competing mechanisms result in thermal atomization, which generally increases with increasing Weber number and decreasing pitch. Additionally, the Leidenfrost point was also found to increase with increasing Weber number and decreasing pitch. A scale analysis was performed to explore the effect of resistance to vapor escape through micropost arrays on thermal atomization, and the resulting scaling describes the experimental findings well.
机译:进行了水滴冲击在水滴眼液和不同微观结构的超散虫表面的热雾化强度的实验研究。在这些场景中的热雾化是液滴沸腾的结果,其中蒸汽气泡通过液滴薄片突出,导致次级液滴的细喷雾。在从120“C至320℃的表面温度范围内研究了平滑的疏水表面和相似的固体级分的三个后型超疏水表面,从120英寸C至320℃,并且从20到200的韦伯数量。使用雾化强度的趋势一种高速图像处理技术。表面温度,韦伯数和微观结构配置的变化显着影响雾化强度,并且认为这些参数被认为直接与调查情景中的雾化动态的三个主要机制联系起来。这些机制在撞击液滴的液体固体界面处是蒸汽产生,蒸汽突破通过扩散薄片,蒸汽逸出,横向偏移。蒸汽产生随着液滴的热传递的增加而增加,这可以通过增加表面温度来产生液滴或通过液滴润湿增加液固接触。通过薄片向上爆裂的蒸气主要依赖于薄片厚度,随着较高的韦伯数量而降低。最后,可以在液滴下方的蒸汽逸出,因为蒸汽通过微阵列横向流动。通过增加结构之间的间距来增强这一点。这些竞争机制导致热雾化,这通常随着拍摄次数的增加和减小的沥青而增加。此外,还发现莱登弗洛斯特点随着较高的韦伯数量和减少音调而增加。进行规模分析以探索耐热阵列对热雾化抗蒸汽逸出的效果,所得缩放描述了实验结果良好。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2021年第1期|120559.1-120559.11|共11页
  • 作者单位

    Brigham Young University. Department of Mechanical Engineering Engineering Building Campus Dr Provo UT 84602 United States;

    Brigham Young University. Department of Mechanical Engineering Engineering Building Campus Dr Provo UT 84602 United States;

    Brigham Young University. Department of Mechanical Engineering Engineering Building Campus Dr Provo UT 84602 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Atomization; Droplets; Superhydrophobic; Thermal; Impingement; Boiling;

    机译:雾化;飞沫;超疏水;热的;冲击;沸腾;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号